
SIM - Student Internship
Matchmaking Platform

Bachelor of Computer Science

by
Gurjot Singh Aulakh

Mortaza Baqeri
Okbamichael Mussie Elias

Faesal al shhadat
Arman Yedicam

Under the supervision of

Assoc. Prof. Tulpesh Patel
Faculty of Technology, Art and Design

Oslo Metropolitan University

Spring 2023



BACHELOR’S PROJECT
DATO

26.05.2022

MAIN PROJECT TITLE

Student Internship Matchmaking (SIM) Platform

NO. OF PAGES/APPENDICES

203/14

PROJECT PARTICIPANTS

Gurjot Singh Aulakh, s351873
Mortaza Baqeri, s351899
Okbamichael Mussie Elias, s331690
Arman Yedicam, s351926
Faesal al shhadat, s339410

INTERNAL SUPERVISOR

Tulpesh Patel

CLIENT

Oslo Metropolitan University

CONTACT PERSON

Tulpesh Patel

SUMMARY

In 2021, the government stated in a public message an encouragement for educational institutions to focus

on better university-industry collaborations by including more and better practical internships

(Kunnskapsdepartementet, 2021, p. 5). Oslomet implemented the "IT project in practice" course in 2015, which

aimed to encourage collaboration between students and industry partners through nine different project types. As

the number of interested students increased over the years, the coordinator identified the need for a platform to

simplify project management and the student internship matchmaking process. Due to the government’s statement

and the course coordinator’s situation, our group felt motivated to implement a solution for this problem. Last

semester, our group created an SRS and an MVP for the platform. In the current semester, we reconstructed our

previous MVP using Laravel, incorporating improved security measures and user-friendly features. The resulting

platform simplifies the management and coordination of student-industry collaborative projects.

3 STIKKORD
Webapplication

Intership Matchmaking Platform

Skill Development

PROJECT NO.
2023 - 57

AVAILABILITY

Open

Department of Information technology

Postal address: PO box 4 St. Olavs plass, 0130 Oslo
Visiting address: Holbergs plass, Oslo



Acronyms

API Application Programming Interface. 6, 7, 10, 11, 35–37, 59, 75, 76, 98, 99, 154

CRUD Create, read, update and delete. 66

CSS Cascading Style Sheets. 36, 64

DSL Domain Specific Language. 36

GDPR General Data Protection Regulation. 54

HTML HyperText Markup Language. 60, 62, 64

HTTP Hypertext Transfer Protocol. 35, 69, 75, 76, 119

IDE Integrated Development Environment. 35

MFA Multi-Factor Authentication. 97

MVC Model View Controller. 60, 64

MVP Minimum Viable Product. 5, 18, 31, 32, 48, 58, 156

REST Representational State Transfer. 37, 98

SIM Student Intership Matchmaking. 4, 9, 11, 22, 51, 52, 118–120

SPA Single Page Application. 59

SRS Software Requirements Specification. 18

1



SSO Single Sigh On. 53

TDD Test Driven Development. 156

XSS Cross-Site Scripting. 87, 93

2



Preface

This report provides a comprehensive overview of our bachelor thesis completed at Oslo Metropoli-

tan University. The bachelor project was initiated by participating in the “DATA3710, IT project

in practice” course during the previous semester, where we collaborated with OsloMet and one of

their project course coordinators.

Our bachelor thesis revolves around creating a complete web application that streamlines the ad-

ministrative tasks for the course coordinator. Our primary objective was to utilize the knowledge

we had accumulated over the past three academic years to develop a solution that would contribute

value to the university while meeting Oslomet’s needs and requirements.

We express our heartfelt gratitude to Tulpesh Patel for entrusting us with the responsibility of

solving the administrative challenges faced by the “IT project in practice” course. We are thankful

for his guidance and support throughout the project, which enabled us to grow and develop our

skills. We also appreciate the course coordinator’s valuable insights and input throughout the plat-

form’s development. With his suggestions and feedback, this project was possible. Lastly, we thank

the Department of Computer Science at OsloMet for providing us with the resources and facilities

necessary to complete this project.

This report is designed for digital reading as a PDF and includes clickable links to facilitate naviga-

tion to references, figures, appendices, and external resources.

3

https://student.oslomet.no/en/studier/-/studieinfo/emne/DATA3710/2022/H%C3%98ST
https://student.oslomet.no/en/studier/-/studieinfo/emne/DATA3710/2022/H%C3%98ST
https://student.oslomet.no/en/studier/-/studieinfo/emne/DATA3710/2022/H%C3%98ST


Contents

Preface 3

List of Figures 13

List of Tables 14

1 Introduction 15

1.1 Project Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Challenges of Course Management Process . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Project Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Previous Work and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 The project group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7 Project Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Initial Product Specifications 22

2.1 Stakeholders Impacted by Student Internship Matchmaking (SIM) . . . . . . . . . . 22

2.2 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Non-functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Process documentation 27

3.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 At start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1.1 Requirements Review Workshop and Priority List Creation . . . . . 27

3.1.1.2 Addressing Availability Challenges and Digital Meetings . . . . . . 28

4



3.1.1.3 Introduction to Git Flow and Implementation Approach . . . . . . . 28

3.1.1.4 Progress Gantt Chart for Task Overview and Timeline . . . . . . . 29

3.1.1.5 Exploring PHP Laravel as the Framework Choice . . . . . . . . . . 31

3.1.2 Under development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2.1 Sprint Planning and Focus Areas . . . . . . . . . . . . . . . . . . . . 31

3.1.2.2 Deprioritizing some Requirements . . . . . . . . . . . . . . . . . . . 31

3.1.2.3 Balancing Functional Requirements and Design Focus . . . . . . . . 32

3.1.3 Areas of Responsibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Tools used in the process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Framework/library used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Working method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Agile development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Scrumban . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.3 Scrumban in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 The development process 41

4.1 Start-up phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Design and Prototype Sprint . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Implementation planning and set up of the software environment . . . . . . . 42

4.2 Development phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Development of MVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1.1 Docker Container Hosting . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1.2 Hosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1.3 MySQL Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1.4 Single Sign On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1.5 Development of the front end with the blade . . . . . . . . . . . . . 53

4.2.2 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Correspondence between the project plan and actual implementation . . . . . 54

4.2.4 Quality assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Reflection and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Challenges around basic setup of coding environment . . . . . . . . . . . . . . 55

4.3.2 Challenges regarding changes in software requirement . . . . . . . . . . . . . 56

4.3.3 Challenges in development of MVP . . . . . . . . . . . . . . . . . . . . . . . . 58

5



4.3.4 Challenges and reflections about the frontend . . . . . . . . . . . . . . . . . . 59

4.3.5 Challenges in deprioritizing some Requirements . . . . . . . . . . . . . . . . . 59

5 Product Documentation 60

5.1 Description of solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.2 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.3 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.3.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.3.2 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.3.3 Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.3.4 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.3.5 API Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.3.6 Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.4 Sign-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.5 Design and accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Correspondence between requirement specification and product . . . . . . . . . . . . 79

5.3 Central data structures in the solution . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Principles for code development . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1.1 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1.2 Object-Oriented Programming (OOP) . . . . . . . . . . . . . . . . . 83

5.3.1.3 Separation of Concerns . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1.4 Don’t Repeat Yourself (DRY) . . . . . . . . . . . . . . . . . . . . . 84

5.4 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.1 Factories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.2 Migrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.3 Seeders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.1 Secure Development and safety measures . . . . . . . . . . . . . . . . . . . . 87

5.5.2 Risk Assessment and Threat Modeling . . . . . . . . . . . . . . . . . . . . . . 87

5.5.3 OWASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5.4 Security solutions for the application . . . . . . . . . . . . . . . . . . . . . . . 94

6



5.5.5 Terms & Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5.6 Secure development in practice . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5.7 Reflections on login and authentication method . . . . . . . . . . . . . . . . . 96

5.6 Relationship to machines/databases/OS . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6.1 API documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6.2 Database Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6.3 Main parts of the program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Testing 102

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 User Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.1 Testing under development phase . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.1.1 User Tests done by course coordinator . . . . . . . . . . . . . . . . . 103

6.2.1.2 Feedback/result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.1.3 Response to the Feedback . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1.4 Student-led User Testing . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.2 Limitations and Challenges in User Testing . . . . . . . . . . . . . . . . . . . 109

6.3 Technical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.1 PhpUnit and Laravel’s built-in testing library . . . . . . . . . . . . . . . . . . 109

6.3.2 Unit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.2.1 Basics of Defect Tracking . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Feature test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5 Smoke test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.6 Challenges in technical testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.7 Correspondence between accurate test coverage and ideal test coverage . . . . . . . . 117

7 User Guide 120

7.1 Registration and Login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.1.1 Common Login Page For All Actors . . . . . . . . . . . . . . . . . . . . . . . 120

7.1.2 Common Password Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1.3 Create an Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 The Core Flow Of The Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Common Functionalities for all actors . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7



8 Conclusion and discussion 153

8.1 Learning Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.2 What is the product’s utility value? . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.3 What would we have done differently? . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.4 Feedback from the Course Coordinator . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.5 Status of further development and production setting of the product . . . . . . . . . 156

8.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A Appendix 164

A.1 Previous Minimum Viable Product (MVP) Version 1.0 . . . . . . . . . . . . . . . . . 165

A.2 Final version of the prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.3 User Test - Template from IT project in practice . . . . . . . . . . . . . . . . . . . . 184

A.4 User Test - Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.5 Interview guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.6 User Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.7 Notification form for the processing of personal data . . . . . . . . . . . . . . . . . . 190

A.8 First version of the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.9 Second version of the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

A.10 Hosting throw OsloMet VM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.11 Hosting throw Microsoft Azure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.12 Modified docker-compose.yml file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.13 Poster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.14 Certificate from the course coordinator . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8



List of Figures

1.1 Course enrollment and project stats . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Course management phases for the course coordinator . . . . . . . . . . . . . . . . . 17

2.1 Course coordinator’s functional requirements . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Student’s functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Requirements for project provider functionality . . . . . . . . . . . . . . . . . . . . . 25

2.4 Non-functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Git workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 A progress Gantt chart of the project . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 ”Kanban” project board created in Notion. . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 A task from Notion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Table of sub-tasks as viewed in the Task section of Notion. . . . . . . . . . . . . . . 44

4.4 Priority View from Notion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Docker Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Deploying error from OsloMet VM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Application error from Microsoft Azure . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 Final version of SIM’s database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 New functional requirements for course coordinator . . . . . . . . . . . . . . . . . . . 57

4.10 New functional requirements for Student’s functional requirements . . . . . . . . . . 57

4.11 New functional requirements for project provider . . . . . . . . . . . . . . . . . . . . 58

5.1 Shows how model view controller works . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Traditional Content Management System . . . . . . . . . . . . . . . . . . . . . . . . 62

9



5.3 Headless Content Management System . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Resources folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Public folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 The layering of the backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.7 Model’s folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.8 Project’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.9 Database fields filled with fake data . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.10 Controller’s folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.11 Middleware’s folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.12 Kernel class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.13 Authenticate.php . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.14 Policie’s folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.15 ProjectPolicy defines the policy for actions on the Profile model . . . . . . . . . . . . 74

5.16 Put request route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.17 API resources’ folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.18 Route’s folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.19 Shows the network requests during the login and register . . . . . . . . . . . . . . . . 77

5.20 Implementation status of Course coordinator’s functional requirements . . . . . . . . 80

5.21 Implementation status of Student’s functional requirements . . . . . . . . . . . . . . 81

5.22 Implementation status of Project Provider’s functional requirements . . . . . . . . . 81

5.23 Non-functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.24 Project factory from SIM application . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.25 Showing the migration code for the user’s model . . . . . . . . . . . . . . . . . . . . 86

5.26 Example of Risk Matrix. Retrieved from [smand] . . . . . . . . . . . . . . . . . . . . 88

5.27 Definition of Stride. Retrieved from [Larndj] . . . . . . . . . . . . . . . . . . . . . . . 89

5.28 DREAD in Risk Matrix. Retrieved from: [SSB13] . . . . . . . . . . . . . . . . . . . . 90

5.29 Risk Matrix Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.30 Risk matrix with STRIDE and DREAD (first edition) . . . . . . . . . . . . . . . . . 91

5.31 The extended risk matrix (final version) . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.32 This is the OWASP Top Ten 2021. Retrieved from [OWAnd] . . . . . . . . . . . . . 93

5.33 Input validation in the registration page . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.34 Checkbox validation in the registration page . . . . . . . . . . . . . . . . . . . . . . . 95

10



5.35 Terms & Conditions link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.36 Swagger API documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.37 MySQL database configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Example code of Laravel’s built-in unit test . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Defect tracking rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Defect tracking overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Integration Test - course coordinator project update scenario . . . . . . . . . . . . . 114

6.5 Testing Company View Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.6 Testing Project View Under High Request Traffic . . . . . . . . . . . . . . . . . . . . 116

6.7 Code Coverage Analysis: Examining Tested and Untested Code . . . . . . . . . . . . 118

6.8 Early Stage Code Coverage Analysis for SIM Application . . . . . . . . . . . . . . . 118

6.9 Code Coverage Analysis for SIM Controllers . . . . . . . . . . . . . . . . . . . . . . . 119

7.1 The login page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 The password reset page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 The password reset mail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Link to the account creation form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.5 Here, you can specify the type of account you wish to create . . . . . . . . . . . . . . 123

7.6 The verification email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.7 The company’s dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.8 ‘Add Project’ option from the side navigation . . . . . . . . . . . . . . . . . . . . . 125

7.9 Create a company first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.10 Example data needed to create a company . . . . . . . . . . . . . . . . . . . . . . . . 126

7.11 Company created successfully . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.12 Page 1, General project information . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.13 Page 2, Project details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.14 Page 3, Project agreements page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.15 Page 4, final step to submit the project proposal . . . . . . . . . . . . . . . . . . . . 131

7.16 Back to page 1, validation error message . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.17 Project proposal created successfully . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.18 Project proposal appears in “All Projects” table with status “NEW” . . . . . . . . . 132

7.19 Course coordinator dashboard where there only projects with status “new” . . . . . 133

11



7.20 Overview of various statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.21 Overview over all projects with status “NEW” . . . . . . . . . . . . . . . . . . . . . 134

7.22 Currently there are no projects with status “UPDATED” . . . . . . . . . . . . . . . 134

7.23 Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.24 Course Coordinator approves a project . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.25 Course coordinator requesting changes . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.26 Course coordinator addressing changes needed to the project proposal . . . . . . . . 136

7.27 Change request sent successfully . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.28 “All projects” link in the side navigation . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.29 Overview over all projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.30 Company dashboard after receiving a change request on a project proposal . . . . . 138

7.31 More details about the project in the dashboard . . . . . . . . . . . . . . . . . . . . 139

7.32 The changes have been done by the company . . . . . . . . . . . . . . . . . . . . . . 140

7.33 Company representative modify an existing project proposal . . . . . . . . . . . . . . 140

7.34 Company representative modify tags of an existing project proposal . . . . . . . . . 141

7.35 The company representative submits changes to existing project proposal . . . . . . 141

7.36 Project updated successfully . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.37 Company-representative views all projects owned by them . . . . . . . . . . . . . . . 142

7.38 Overview of the updated projects on the course coordinators dashboard . . . . . . . 142

7.39 Success message, project proposal submitted . . . . . . . . . . . . . . . . . . . . . . 143

7.40 Overview of the projects on the student dashboard . . . . . . . . . . . . . . . . . . . 143

7.41 Overview of one of the project’s proposals . . . . . . . . . . . . . . . . . . . . . . . . 144

7.42 Overview of the profile page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.43 Overview of the profile details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.44 Overview of profile page after changes . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.45 Overview of the input field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.46 Overview of the error message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.47 Showing that the student has been deleted . . . . . . . . . . . . . . . . . . . . . . . . 148

7.48 Change password page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.49 The “All Users” page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.50 The “Admins” page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.51 The “Companies” page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

12



7.52 The “Students” page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.53 The result page after searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

13



List of Tables

3.1 Individuals in Group - Names, Roles, Responsibilities. . . . . . . . . . . . . . . . . . 33

4.1 Sprints overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Details about docker containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Company requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Course Coordinator’s requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Student requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Tasks implemented after user test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Feedback of student test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

14



Chapter 1

Introduction

1.1 Project Background

In 2021, the Norwegian government emphasized the importance of university-industry collaborations

and practical internships for students. OsloMet established the course “DATA3710, IT project in

practice,” which aims to provide students with practical IT experience.[Aul+22]

The course started around August 2015 and over the years, it quickly gained popularity among

students, resulting in a total of approximately 492 students and 194 projects spread across 145 or-

ganizations in 9 different project types (numbers are from the last 9 semesters). As seen in figure

1.1, the trend of students, projects, and project providers has steadily increased over the past six

years.

During the spring of 2023, the initial enrollment for the “IT project in practice” subject was 100

students, but 40 of them eventually dropped the subject, resulting in a total of 60 students remain-

ing, as shown in 1.1.The exact reasons for the high dropout rate are unclear, but from the course

evaluation we know that it is the number, type and variety of the projects there are not enough

projects to satisfy all 100 students. Another potential factor could be the challenging nature of

the internship matchmaking process at the beginning of the subject. Many of our fellow students

have expressed similar concerns, stating that finding a suitable project and contacting the project

provider can be difficult, ultimately leading to fewer students engaging in internships.

15

https://student.oslomet.no/en/studier/-/studieinfo/emne/DATA3710/2022/H%C3%98ST
https://student.oslomet.no/en/studier/-/studieinfo/emne/DATA3710/2022/H%C3%98ST
https://student.oslomet.no/en/studier/-/studieinfo/emne/DATA3710/2022/H%C3%98ST


Figure 1.1: Course enrollment and project stats

1.2 Challenges of Course Management Process

Two key challenges arise in managing this course. Firstly, the course is overseen by a single course

coordinator, which presents limitations regarding resource availability and workload management.

Secondly, the current task management approach must be updated and more efficient. Figure 1.2

visually represents the primary administrative tasks associated with the course management process.

These tasks include collecting projects via email, conducting quality assurance of projects using

online forms, creating project descriptions by rewriting and copying/pasting from the online forms,

uploading the descriptions on Canvas for students, and manually verifying project assignments by

crosschecking Canvas, communicating with project providers via email, and reaching out to students.

16



Figure 1.2: Course management phases for the course coordinator

17



With the increasing number of students taking the courses, as seen in 1.1. There is a need for a

more effective solution to manage the courses. Addressing this problem is one of the main objectives

of our Bachelor Thesis.

1.3 Project Objectives

Our solution focuses on streamlining and automating tasks related to managing the course, such as

emailing companies, using online forms, exporting data, rewriting documents, and posting project

descriptions on Canvas.

The main functionalities of the application include companies creating project proposals, the course

coordinator reviewing and approving projects, and students applying for projects that match their

interests and skills. This ensures a better matchmaking process and easier coordination in the

beginning phase of the course “IT project in practice”.

1.4 Previous Work and Methodology

In the previous semester (Autumn 2022), we undertook a project as part of the “IT project in prac-

tice” course. The objective of the project was to design and implement a platform that simplifies

the administrative processes associated with course management. We conducted a thorough analy-

sis of the requirements and documented them in a Software Requirements Specification (SRS), see

chapter 2 for more about our SRS. Using pure PHP programming, we developed a Minimum Viable

Product (MVP) to address this challenge. While the previous Minimum Viable Product (MVP) was

simplistic in nature, it did incorporate the essential functionalities, see appendix A.1 The functional

requirements for the application mainly remained the same, which was helpful during the develop-

ment of the current solution.

Building upon our previous work, our goal for the bachelor’s thesis is to redevelop a more efficient

and secure platform using the Laravel PHP framework.

18

https://student.oslomet.no/en/studier/-/studieinfo/emne/DATA3710/2022/H%C3%98ST
https://student.oslomet.no/en/studier/-/studieinfo/emne/DATA3710/2022/H%C3%98ST
https://student.oslomet.no/en/studier/-/studieinfo/emne/DATA3710/2022/H%C3%98ST


1.5 The project group

Our project group comprises five computer engineering students from OsloMet who have previously

collaborated on various project tasks during our studies. We are a tightly knit group and are well

acquainted with each other’s strengths and weaknesses, which allows us to complement each other

well. Together, we possess a diverse range of expertise and experience that we bring to the table for

this bachelor thesis. Given our strong track record of successful collaboration, it was easy for us to

join forces for this project.

(a) Gurjot Singh Aulakh
Full-Stack Developer

(b) Mortaza Baqeri
Full-Stack Developer

(c) Arman Yedicam
IT-Security Analyst

(d) Okbamichael Mussie
Technical tester

(e) Faesal al shhadat
UI/UX Designer

19



1.6 Supervisor

OsloMet:

Tulpesh Patel

Associate Professor,

Fakultet for teknologi, kunst og design,

OsloMet

As we solved the problem of Tulpesh Patel, it was natural that he became both our internal and

external supervisor. We contacted the supervisor early in the project and agreed to hold weekly

meetings.

20



1.7 Project Provider

Oslo Metropolitan University -
Storbyuniversitetet
Postboks 4, St. Olavs plass, 0130 Oslo

OsloMet is an abbreviation for the international name Oslo Metropolitan University. OsloMet offers

various degree programs in technology, healthcare, and pedagogy. Institut IT, a department within

OsloMet, provides the relevant course(s) related to information technology education and training.

21



Chapter 2

Initial Product Specifications

2.1 Stakeholders Impacted by Student Internship Matchmak-

ing (SIM)

Those who will primarily benefit, and be affected by the “SIM”:

• The Course Coordinator

• Students taking the course

• Project Providers

The main tasks for the course coordinator are:

1. Receive projects proposals

2. Evaluate project proposals

3. Make projects available

4. Easy overview of students and projects

The main tasks for the student are:

1. Go through project descriptions

2. Apply for projects

3. Contact companies

22



The main tasks for the project provider are:

1. Create projects

2. Edit projects

3. Track project status

4. Go through student applications

5. Accept/decline student applications

2.2 Functional Requirements

The functional requirements define the specific features and capabilities that the system should

possess to address the needs of its users. These requirements are often expressed as user stories in an

agile development approach.[Prond] Figure 2.1, 2.2, 2.3, provides examples of functional requirements

we made in the last semester prior to the bachelor project.

23



Figure 2.1: Course coordinator’s functional requirements

24



Figure 2.2: Student’s functional requirements

Figure 2.3: Requirements for project provider functionality

25



2.3 Non-functional Requirements

Non-functional requirements encompass the system’s performance, security, reliability, and main-

tainability. These requirements are not directly tied to the system’s functional goals but are crucial

for effectiveness. Figure 2.4 presents examples of non-functional requirements.

Figure 2.4: Non-functional requirements

26



Chapter 3

Process documentation

3.1 Planning

The process documentation will provide detailed information about our project planning and the

steps taken to reach the final product. The planning phase of this project has been an essential part

of our work, as we have dedicated efforts to documentation, front-end, and back-end development.

3.1.1 At start-up

3.1.1.1 Requirements Review Workshop and Priority List Creation

To ensure a clear understanding of the project requirements and specifications, the group initiated

a workshop. This workshop allowed each member to individually review the requirements and spec-

ifications. Following the individual review, a joint session was conducted where the group discussed

and consolidated their findings. As a result, a priority list of the requirements and specifications

was created, as we have shown above in chapter 2 of the project documentation.

27



3.1.1.2 Addressing Availability Challenges and Digital Meetings

Recognizing that group members had other commitments that limited their availability throughout

the week, the group decided to address this challenge by conducting digital meetings at the beginning

of the project. Although these digital meetings allowed members to participate remotely, it was noted

that it hindered the group’s ability to work closely together. However, despite this constraint, all

members could complete their assigned tasks successfully.

3.1.1.3 Introduction to Git Flow and Implementation Approach

In the first sprint of the project, a team member organized a concise workshop to introduce Git flow,

a popular version control workflow. This workshop provided an overview of the Git flow process and

outlined the team’s approach to implementing it in the future, as shown in 3.1. By adopting Git

flow, the team aimed to streamline their collaboration, ensure proper version control, and facilitate

efficient code management throughout the project.

Figure 3.1: Git workflow

28



3.1.1.4 Progress Gantt Chart for Task Overview and Timeline

To visualize the project tasks and their respective timelines, the group utilized a progress Gantt

chart, as shown in 3.2. The chart divided the project into four phases: startup, development,

testing, and documentation. Within each phase, specific milestones were identified to mark key

progress points. The project timeline was depicted on the right side of the chart, providing an

overview of the expected duration for each phase and milestone. The Gantt chart served as a helpful

tool to monitor and manage task progress throughout the project lifecycle.

29



Figure 3.2: A progress Gantt chart of the project

30



3.1.1.5 Exploring PHP Laravel as the Framework Choice

Our previous MVP was developed using PHP, so it was natural to take the next step and use a

framework to improve the application. We learned that Laravel is one of the leading frameworks

for PHP and most importantly has built-in security features. [Patnd] Another reason for choosing

Laravel as a framework is that two of our team members had experience using Laravel at work.

Therefore, we chose to use Laravel.

To prepare for the project, we decided to enroll in a PHP Laravel course before starting the planning

phase. [Ari22] With the course, we aimed to expand our understanding of this programming language

and framework before using it to create the application. We also wanted to help the rest of the group

familiarize themselves with the framework more easily.

3.1.2 Under development

3.1.2.1 Sprint Planning and Focus Areas

In this subchapter, we discuss the formulation of our project plan, as depicted in 3.2. We structured

our work into two-week sprints and identified the specific focus areas for each sprint. This approach

allowed us to prioritize and allocate our resources efficiently. However, adhering strictly to the plan

presented challenges, as we encountered unforeseen obstacles and shifting priorities throughout the

project.

3.1.2.2 Deprioritizing some Requirements

Due to many factors described in chapter ??, we had to prioritize and deprioritize requirements

in the specification. This was done in collaboration with the course coordinator. We discuss the

factors and things we took into account when making these decisions, emphasizing that the changes

we made had a minimal effect on the overall project results.

31



3.1.2.3 Balancing Functional Requirements and Design Focus

This subchapter delves into the importance of striking a balance between functional requirements

and design considerations throughout the project. Initially, our emphasis was primarily on functional

implementation, keeping in mind the overall/universal development process and our initial MVP 1.0

concept. However, as the project progressed, we recognized the need to allocate more attention to

design aspects. We explore the rationale behind this shift and discuss how it was communicated and

aligned with the course coordinator. Further details on this topic can be found in chapter ??.

3.1.3 Areas of Responsibility

At the beginning of the project, our goal was that each member of the group could implement parts

of the application. Therefore, as mentioned earlier, we purchased a course in Laravel so everyone

had knowledge and experience using Laravel. Sadly not everyone could complete the course. After

the project started, we quickly realized that this was not the best approach as there was a big

gap in technical knowledge when it comes to coding and areas of interest. We solved this issue by

allowing each team member to take responsibility for areas in which they were most interested and

had the best knowledge. Therefore, early in the project, we thoroughly discussed each individual’s

preferences, areas of focus, strengths, and weaknesses. After reaching a consensus, we allocated

tasks and responsibilities:

32



Name Role Responsibility

Gurjot Singh Aulakh Scrum master and
full-stack developer

Responsible for software
development across the
entire stack and leading
the agile processes and

practices within the
team.

Mortaza Baqeri Full-stack developer Responsible for software
development across the

entire stack

Okbamichael Mussie Technical Tester Responsible for unit
testing, feature testing,

and API-testing

Arman Yedicam Security Analyst Responsible for the
security of the product

Faesal al shhadat UI/UX Designer Responsible for the
design of the product

Table 3.1: Individuals in Group - Names, Roles, Responsibilities.

33



3.2 Tools used in the process

This section provides a concise overview of the tools utilized in the project, along with a general

description of each tool. Subsequently, we will delve into a detailed discussion on how these tools

were effectively employed throughout the report.

Notion:

Notion is a versatile platform that offers a unified space for thinking, writing, and planning. It allows

for capturing thoughts, managing projects, and even running an entire company, all while offering

complete customization to match one’s preferences. [Labnd] Notion was an obvious choice for our

team due to their familiarity with the platform, requiring minimal training.

Docker:

Docker is a platform-as-a-service application that enables container creation, operation, and manage-

ment. Virtual machines form the foundation of Docker, allowing for easy creation, distribution, and

interaction. Any operating system or software architecture can seamlessly function with programs

enabled by it. [Docnd]

Facebook Messenger:

Facebook Messenger is a chat tool that operates through a web-based platform. [Metnd] The tool

enables group members to share information and engage in informal conversations quickly.

Figma:

Figma is a user-friendly tool that enables the rapid creation of visual prototypes for digital interfaces

such as webpages. [Fignd] We utilized Figma to construct and test our prototype and refine it

for further development. The resulting prototype was the foundation for our service’s graphical

representation and subsequent progress.

Github:

Developers can work collaboratively on software projects using GitHub, a web-based platform that

enables version control. [Gitnd] GitHub is built on Git and offers features such as bug tracking, task

management, and documentation. Since our team is already familiar with GitHub, it is an ideal

option for us.

34



Microsoft OneDrive:

Microsoft OneDrive provides the option for online storage. [Micnda] We saved all project-related

files and materials on OneDrive and shared them among the group members. This feature enabled

us to collaborate and work together on these documents.

Microsoft Word:

Microsoft Word served as our computerized writing tool. [Micndb] We used it to write all the reports

and supporting documents for the project, enabling seamless collaboration and co-authorship on

these materials.

MySQL Workbench:

MySQL Workbench is a comprehensive visual tool that unifies database builders, coders, and DBAs.

[Orand] The report creators utilized it to create specific diagrams, such as database diagrams.

PhpStorm (IDE):

The group members were already familiar with editors such as IntelliJ IDEA, which made it a

sensible choice for editing both the client and backend code. IntelliJ IDEA is widely used by

software professionals worldwide, especially those who work with Java and Kotlin in enterprise,

online, mobile backend, and full-stack applications. On the other hand, PhpStorm is specifically

designed for developers who create online applications or command-line tools using PHP or PHP-

based solutions. [Capnd] [Jetnd] As a result, no training was required since the group members were

already familiar with these editors.

Postman:

The tool, Postman, is designed for evaluating APIs. This utility provides a convenient way to assess

APIs. With Postman, users can transmit API endpoint inquiries with the desired parameters in the

”header” and ”body” by the HTTP protocol.[Posnd]

Zoom.us:

Zoom.us, a video conferencing tool, was utilized for guidance meetings with an internal supervisor

at OsloMet and all group meetings. [Comndb]

35



3.3 Framework/library used

In this section, we will provide a brief and general overview of the frameworks and libraries that

were utilized in the project. This serves as an introduction before we delve into a more detailed

explanation of how we employed them and the connections between them later in the report.

Blade:

The Blade is the scripting engine that comes bundled with Laravel and is simple and powerful. We

opted to use the blade as our frontend framework since it is integral to Laravel. [Larnda]

Bootstrap:

Bootstrap is the go-to CSS framework for developers who want to build mobile-friendly, responsive

web pages that are flexible and adaptable to different screen sizes. [W3Snd]

Php – Laravel:

Laravel is a web application platform that boasts an elegant and expressive syntax, which enables

developers to focus on the creative aspects of building applications rather than getting bogged down

in details. By providing a solid foundation, Laravel makes it easier to focus on creating rather than

worrying about the finer development points. [Otwnd]

JavaScript:

JavaScript (JS) is a computer language with first-class functions that can be interpreted or, just-in-

time, compiled. JavaScript originated as a web scripting language and has evolved into a universal

language that finds application in various contexts beyond web development. Various non-browser

environments such as Node.js, Apache CouchDB, and Adobe Acrobat utilize it, although it is most

well-known as the scripting language for websites. [nd]

Mockery:

The Mockery is a flexible PHP fake object system that enables easy utilization for unit testing with

PHPUnit or other testing frameworks. Its main goal is to offer a concise API that uses a Domain

Specific Language (DSL) that can precisely define all possible object operations and interactions in

a human-readable manner. [Bcnd]

36



PhpUnit:

PHPUnit provides an efficient and effective way to perform unit tests on PHP code, allowing devel-

opers to identify and fix bugs quickly. It offers a range of features, such as mock objects and code

coverage analysis, that help ensure the quality and reliability of PHP applications. [Bernd]

Swagger:

The Swagger framework is responsible for automatically generating descriptions of a REST API.

Swagger is beneficial for maintaining and developing the solution as it provides a clear and structured

overview of API interaction without requiring familiarity with the underlying code or structure.

Incorporating Swagger declarations into the API enables the quick creation of a website with visual

representations of all endpoints and their specifications. Facilitation of automated documentation

generation and rapid assessment of API communication via the website is enabled. [Sofnd]

MySQL:

Popular relational database management system MySQL is open source. TSQL, or Structured

Query Language, manages and manipulates table data. MySQL is a well-liked option for web-based

applications and data-driven websites because of its reputation for dependability, usability, and

performance. We use MySQL because it can easily be coupled with other programming languages

like PHP and Python and can handle significant volume and high throughput data. [Aul+23]

Laravel Sail:

Simplifies working with Laravel’s default Docker development environment by providing a lightweight

command-line interface. It includes a docker-compose.yml file and a sail script at the root of your

project, allowing you to interact with Docker containers conveniently. Sail is suitable for build-

ing Laravel applications using PHP, MySQL, and Redis, even without Docker experience. It is

compatible with macOS, Linux, and Windows (via WSL2). [Larndf]

xDebug:

xDebug is an effective PHP debugging tool that aids developers in efficiently identifying and resolving

code errors. By incorporating xDebug into PHPUnit and Laravel, developers can enhance the

debugging capabilities of their unit tests. This integration enables them to better track test runs,

examine variables, and identify code errors. Particularly for Laravel applications, xDebug facilitates

step-by-step debugging, the establishment of breakpoints, and analysis of the application’s behavior

37



during testing. [Xdend]

Livewire:

Livewire is a comprehensive framework designed for Laravel, which simplifies the process of creating

dynamic interfaces while staying within the familiar Laravel environment. It enables developers to

construct contemporary web applications using Vue and React, minus the additional intricacies that

could complicate their workflow. [Livnd]

38



3.4 Working method

We used a flexible approach for our project and opted for the agile methodology. This helped us

quickly create and test a prototype to confirm or refute our assumptions about the solution. We have

used various methods within agile methodology in our project, which we will discuss individually

and provide reasoning for their selection.

3.4.1 Agile development

The group decided to work according to an agile framework called Scrumban, combining the two

methodologies, Scrum and Kanban. We reached this conclusion because both frameworks contribute

value in different areas, and we required qualities from both. [Atlnd]

3.4.2 Scrumban

Scrumban is a hybrid approach combining elements of both Scrum and Kanban. We decided to use

Scrumban due to its high relevance in the IT industry. [San22]

The group acknowledged the inherent uncertainty and potential for unforeseen changes in require-

ments. For example, while planning for some of the sprints, the group remained flexible to accom-

modate any alterations in the requirements specifications along the way. The agile methodology

allowed the team to respond proactively to changes while maintaining a structured project plan.

3.4.3 Scrumban in practice

The project was structured into six sprints lasting for two weeks and seven sprints lasting for one

week. Tulpesh conducted sprint review meetings weekly to present our progress and contributions.

The sprint review meetings duration was one hour. We also held retrospective meetings to ensure

that the team could reflect on the process and make necessary adjustments. These meetings allowed

39



all team members to share their opinions on what had gone well, what had gone poorly, and what

could be improved.

During the planning phase of the first sprint, we created a backlog to keep track of all the tasks

in the project. We continuously updated this backlog with new tasks as the project progressed.

Initially, these tasks were based on the user stories of the application.

We implemented a Kanban board in Notion. Subchapter 4.1.2 discusses the rationale behind selecting

Notion and its utilization.

To ensure alignment among team members, we conducted daily 15-minute stand-up meetings at

10 am on Mondays, Wednesdays, and Fridays. These meetings involved brief reviews of individual

accomplishments since the previous meeting, discussing intended goals, and identifying obstacles.

Gurjot, with his prior experience in agile development methodologies, assumed the role of the

project’s scrum master.

40



Chapter 4

The development process

The project has progressed through different phases with well-defined timelines, while some proce-

dures have remained constant throughout the entire project duration. The project’s duration spans

20 weeks, and to streamline the workflow, we divided it into nine sprints.

4.1 Start-up phase

We will now provide an overview of the distinct sprints and phases consistently present throughout

the project’s timeline.

4.1.1 Design and Prototype Sprint

Design sprints are a structured process that rapidly develop and test prototypes to validate ideas

and solve challenges. They foster collaboration and innovative problem-solving, with key objectives

including idea validation, user feedback, and practical solution generation. Design sprints offer

benefits such as rapid iteration, risk reduction, teamwork, and vision alignment. [two22]

41



Our design sprint team consisted of five individuals with varied skills and expertise, driving our

achievements. Through collaboration and leveraging our diverse skill sets, we generated well-rounded

solutions that addressed project aspects. We prioritized functional requirements over visual design

ideas, given the project requirements.

During the first week of the design sprint, we split into two groups, one focusing on backend im-

plementation and the other on design ideas. This approach allowed for independent thinking and a

wide range of suggestions. In the second week, we shifted to prototype development, consolidating

the best elements from individual proposals and making collective decisions on design direction.

Technical considerations were also addressed, and we chose Figma as the tool for implementing the

prototype.

We conducted website research on matchmaking internship solutions to gain insights and inspira-

tion, analyzing three specific websites for user flows and interfaces. This research influenced the

development of our prototype.

At the start of the project’s 3rd sprint, we tested the prototype with our course coordinator and

gathered feedback on functionality, user interface, user flow, and the overall concept. The feedback

was predominantly positive, with some minor issues related to language usage and images. We

iterated on the prototype to align with specifications and the coordinator’s feedback. To see the

final version of the prototype, check Appendix A.2.

4.1.2 Implementation planning and set up of the software environment

We utilized Notion to create a dedicated project board to manage our project effectively. This

board served as a centralized hub for distributing tasks and responsibilities among team members.

It allowed us to track progress on specific functions, complete administrative tasks and projects,

and monitor individual responsibilities. We utilized the project board to review our progress during

our stand-up meetings. Although this approach was new to the group, we chose Notion due to its

familiarity among team members and prior experience using the application. Implementing this

approach helped us structure our work process and enhance overall productivity.

42



To effectively manage the task backlog, shown in figure 4.1. This board provided a complete overview

of all the project tasks. We divided each task into sub-tasks to simplify problem-solving and closely

monitor task progress. Figures 4.2 and 4.3 offer visual representations of this approach.

Figure 4.1: ”Kanban” project board created in Notion.

Figure 4.2: A task from Notion

43



Figure 4.3: Table of sub-tasks as viewed in the Task section of Notion.

To categorize tasks, we used tags. Each task was represented by a card on the Kanban board, allowing

us to assign priority, deadline, responsible person, and iteration for completion. We utilized different

board views to enhance task management:

1. Priority View: This view listed tasks based on their priority, difficulty level, and iteration

association. It helped us prioritize critical tasks and allocate our time and resources effectively. See

44



figure 4.4 for an illustration.

Figure 4.4: Priority View from Notion.

2. Timeline View: We utilized a Timeline view to visualize the sprints and understand the task

sequence and inter-dependencies.

3. Mine Board: Each team member had a Mine board displaying tasks assigned to them.

4. All Board: Each team member had an All board that showed all the tasks. This approach

facilitated task visibility and effective collaboration within the team.

5. Backlog Board: The Backlog board displays all the tasks currently in the backlog.

These board views and categorizations allowed us to manage our tasks efficiently, ensuring clear

visibility, effective collaboration, and streamlined progress throughout the project.

45



4.2 Development phase

The development phase consists of 13 sprints, each with its specific focus areas, as indicated in the

table below. The first six sprints lasted two weeks each. After this period, we reduced the sprint

duration from two weeks to one week. The reason we halved the sprint duration was because we

understood that gaining feedback from the course coordinator every week was much more efficient

for improvement than using two weeks per sprint. In other words, the group’s efficiency increased

when switching from two to one week sprints. It is also important to note that the front- and

backend implementation as well as the testing was done every week until sprint 11.

46



Sprints Week Number Description

Sprint 1 2 & 3 Planning and creation of preliminary

project report

Sprint 2 4 & 5 Design and prototyping of frontend

Sprint 3 6 & 7 Security analysis, backend development

and smoke testing

Sprint 4 8 & 9 Implementation of frontend and survey

planning

Sprint 5 10 & 11 Developing T&Cs, implementing tests,

and discussing survey methods

Sprint 6 12 & 13 Usertesting and UI/UX improvements

Sprint 7 14 Code refactoring and restructuring

Sprint 8 15 Building a complete user guide for all

actors

Sprint 9 16 Creating project poster to present at

IT-Expo

Sprint 10 17 Planning the execution of the Bachelor

report and distributing the work based

on our roles

Sprint 11 18 Creating a template and an early draft

of the Bachelor report

Sprint 12 19 Writing the Bachelor report

Sprint 13 20 Finishing the Bachelor report

Table 4.1: Sprints overview

Throughout the entire development process, the project team maintained a flexible workflow, re-

sulting in a highly positive group dynamic. In situations where individual motivation waned, the

group managed to sustain the dynamics by being open about personal challenges. The group was

also willing to support and help each other to contribute to the project in the best possible way.

This created a conducive collaborative atmosphere and provided significant support to each team

47



member.

In the upcoming chapters, the various phases will be discussed in greater detail, providing more

insights and elaboration.

During the implementation of the MVP, we experienced that it took longer than expected, and it

turned out that the application was more demanding to implement than anticipated. As a result, it

was impossible to develop in several iterations as we had planned in the Gantt chart. Additionally,

we wanted to add extra functionality, which included the ability for ”digital signing of contracts,”

where students could sign work and confidentiality agreements through the application. We also

planned to conduct user tests with companies, but this was postponed due to lack of approval in

time from SIKT (Appendix A.7).

Along the way, there were also time-consuming activities such as working on the project report and

creating a poster, see appendix A.13

4.2.1 Development of MVP

We began by implementing the main functionality of the application and established database models

based on the requirements specifications, appendixes A.8 and A.9.

The team focused heavily on backend development and creating activity and user models. The

application’s appearance could have been more emphasized initially, as the design was simple and

intuitive. Most of the focus was on functional requirements over non-functional ones, seamlessly

integrated with the implemented functionality. The goal was to ensure users could use the features

effectively and efficiently.

4.2.1.1 Docker Container Hosting

We started setting up the Docker container by creating a repository on GitHub called ”BachelorOpp-

gaven2023”. We used PhpStorm as our development environment for the project. We started with a

48

https://sikt.no/


predefined docker file from Sail and made modifications to create five Docker containers, see appendix

A.12.

Docker Containers What were they used for?

Selenium-1 To run automated tests

Redis-1 To handle caching of data and to accel-

erate database processing

MySQL-1 Contained the database and was used

to store and manage data of the appli-

cation

Mailhog-1 To capture and display email messages

sent from other containers in the system

Sim-1 The container where the entire applica-

tion was located and could be run.

Table 4.2: Details about docker containers

The entire application (front- and backend) was placed in the Docker container called ”sim-1”.

Figure 4.5: Docker Containers

49



4.2.1.2 Hosting

Early in the process, we decided to host our web application so that we could easily perform user

tests. Therefore, we researched how to deploy a Docker-containerized Laravel web application using

online resources.

We contacted the IT department at OsloMet to get help deploying our web application. After

talking to them, we were given access to a Linux VM hosted on OsloMet servers to deploy our

web application. However, some errors prevented us from completing the deployment anyway. We

discovered the problem in the container ”pmp-1” (which was later renamed to “sim-1”), as shown

in figure 4.6, but finding the error and fixing it was tough. Details about this error can be found in

appendix A.10.

Figure 4.6: Deploying error from OsloMet VM

After not being able to solve the previous issue with the Linux VM, we tried to deploy the web ap-

plication on Microsoft Azure. We needed more expertise in Microsoft Azure, therefore, we contacted

many of our acquaintances and asked for help to deploy. Unfortunately, none had enough knowledge

and time to assist us. Nevertheless, we did not give up and tried again. Eventually, we managed to

deploy the web application, but we experienced an error that prevented us from getting it to work

correctly, as shown in figure 4.7.

Figure 4.7: Application error from Microsoft Azure

50



Details about this error can be found in appendix A.11. We found out that the problem was in the

docker file.

Since hosting was not a part of the requirements specification, we chose not to spend any more time

on this and would consider it later if we had enough time remaining.

4.2.1.3 MySQL Database

In this project we have used MySQL as our database client. We use MySQL because it can easily

be coupled with PHP and Laravel framework and also because it can handle significant volume and

high throughput data. MySQL database is run through docker, as a docker container. Figure 4.8

illustrates our final version of SIM application.

51



Figure 4.8: Final version of SIM’s database

52



4.2.1.4 Single Sign On

SSO, or “Single Sigh On (SSO),” is an authentication method that allows users to log into multiple

applications with a single login. This means users do not have to create separate accounts or log in

multiple times to access different systems. Instead, they can use one login to access all the other

systems they need to use, making it easier and more efficient to work across other platforms and

applications. [App23] We considered various options and decided to use Feide login, a popular SSO

solution in Norway.

In the meantime, we encountered several strict requirements to use Feide login, including the need

for at least one person on the team to be a master’s student and the team to have a company with

an organization number. Unfortunately, we did not meet these requirements and could not use Feide

login. Read more about this in section 5.1.4.

4.2.1.5 Development of the front end with the blade

During the implementation of Blade, most things went smoothly. The blade had some limitations

that made it difficult to implement certain parts of the application, especially parts that needed to

be dynamic, such as favoriting projects. We used Blade syntax to implement the frontend. For more

information, see section 5.1.2.

4.2.2 Documentation

Here, we present the documentation methods used for the entire project.

Project Diary

We have chosen Notion as our project diary and documentation tool. Notion has served as a log for

what has been done when it was done, and who worked on what in different stages of the project.

We have also used Notion to document the entire project, the process, and the required tasks.

User guide for a solution

53



We have created a detailed platform description that can be used as a user guide. The user manual

will clearly explain how our solution can be used. See section 7, “User Guide.”

Final report

Our bachelor thesis summarizes the project, including its challenges and successes. The report will

also reflect on what we could have done differently and what we have learned from the project.

4.2.3 Correspondence between the project plan and actual implementa-

tion

The goal of the entire project plan was to establish an operational plan for the project to approach the

development of the application with efficiency. The implementation of the product was a crucial part

of this plan. The group developed the entire plan collaboratively, based on requirement specifications

and project analyses, the plan aimed to manage our work with time as a critical factor. Roles were

assigned between the group during the project phase to ensure efficient execution of the tasks.

The group discussed important points such as the requirements specification and GDPR updates.

The team had to be flexible and adapt to changes, ensuring alignment with the course coordinator’s

needs. Taking an iterative approach to development allowed continuous testing and validation,

saving time in the long run.

The implementation was similar to the project plan, but some things needed to go according to the

plan. This was because the implementation process sometimes depended on responses from people

outside the group. Therefore some tasks had to be put on hold, resulting in a different approach

than the project plan.

4.2.4 Quality assurance

During the development phase, Notion and GitHub were used as tools to gain easier access to the

entire project in a structured and easy way. The applications provided value to our product by giving

us free comprehensive platforms that made collaboration and communication easier in the software

54



development process. The applications made it possible for the members to edit and view the same

documents. Therefore, if something was wrong or unclear, any of the members had the possibility

to comment or edit. When met with challenges requiring a collective review, the responsible team

members would conduct a review. Additionally, commenting on these challenges in the Kanban

board on Notion was possible. All members had access to the Kanban board to comment and share

their thoughts on the different tasks. If anyone had any incidents or questions, they were taken

forward and discussed during the stand-up meetings.

4.3 Reflection and Discussion

4.3.1 Challenges around basic setup of coding environment

The initial setup of the code environment was a significant challenge. We were determined to avoid

the common issue of “It works on my machine, but not on yours” and decided to utilize Docker.

However, our prior knowledge of Docker was purely theoretical, and we had no practical experience

in creating and running a Docker container for a web application, which made the task daunting.

We encountered numerous hurdles during the setup and execution of Docker, but thankfully, Laravel

came to our rescue with Sail.

Sail simplified the process of configuring the code environment with Docker, however it introduced

additional complexity to other aspects of the setup. For example, difficulty arose when trying to

configure phpStorm to utilize the docker containers for running the application and the automated

tests. Furthermore, Sail made it difficult to configure xDebug.

Lastly, the inability to deploy or host the application meant that we could not set up the development,

staging, and production environments as intended. This hindered our ability to follow the planned

Git workflow effectively, furthermore it made it more challenging for us to perform usertest of new

features, because we had to wait for our meeting with our course coordinator to show what we had

made and get feedback. Further details on this topic have already been discussed previously in

4.2.1.2

55



We encountered many challenges and It was incredibly time-consuming to set up the development

environment. We spent multiple weeks in the beginning of the project to solve these issues, but

ultimately solving the issues made the development process much easier.

4.3.2 Challenges regarding changes in software requirement

At the start of bachelors, we had discussions about the key points of the project with the entire

group and course coordinator and created product requirements. Initially, the focus was on the func-

tionality and security aspect of the application. Although we had initially envisioned the application

to be visually appealing and accessible to all users, we did not prioritize this aspect significantly as

it was not specified in the product requirements provided by the course coordinator.

Later in the project we got many changes in requirements from the course coordinator. It was both

functional and nonfunctional changes, but the biggest change was that UI/UX was now heavily

prioritized. We performed many small feature tests with our course coordinator, and it was apparent

that the UI/UX design was important as we got a lot of feedback on how to improve the UI/UX

from these tests.

This meant that we could no longer follow our initial plan of focusing mainly on backend and security

and we spent a lot of time refining and creating the best possible frontend.

We had to address these new requirements and try to tackle them as quickly as possible as they

came up to stay on track with the project plan. This resulted in delays from the original plan. This

also rendered many of our initial designs useless as it was working but not up to standards in terms

of UI/UX. We ended up relying on custom bootstrap for most of the development as we knew it was

created by professionals.

Throughout the course of the project, we received several updates to the functional requirements

from our course coordinator. These updates encompassed additional functionalities as well as im-

provements to existing ones. The list of functional changes can be found in figures 4.9, 4.10, and

4.11. While some of these modifications may appear minor, they did contribute to project delays

due to the time required for implementation. We have made significant progress in developing most

56



of these new features, with some nearing completion. However, we ultimately made the decision to

prioritize the completion of the bachelor’s report before resuming work on the application. To see

which new requirement we have started working on, refer to chapter 5.2.

Figure 4.9: New functional requirements for course coordinator

Figure 4.10: New functional requirements for Student’s functional requirements

57



Figure 4.11: New functional requirements for project provider

4.3.3 Challenges in development of MVP

In the development of the current MVP, we chose not to continue developing the MVP we had from

the previous semester. Though most of the core functional requirements for the application remained

the same, there are multiple reasons for starting on scratch rather than work on the previous code.

One of the primary reasons for not continuing with the previous MVP was because the previous

MVP was implemented in pure PHP and lacked security features. Recognizing the importance of

enhanced security, we made the decision to adopt the PHP framework, Laravel, for the new MVP.

Laravel offers integrated security features, as outlined in section 5.5. Instead of attempting to retrofit

the previous MVP to utilize the framework, it was more efficient to start anew with a fresh Laravel

instance.

Finally, the code for the previous MVP lacked proper structure and the database was not well-

designed as it did not have proper relationships. This could lead to potential scalability issues for

the application in the feature, furthermore the code could be difficult to work on especially for new

developers who would take over the future development. Our decision was easily made due to the

combination of these factors and the chance to expand our knowledge and experience by utilizing a

new framework.

58



4.3.4 Challenges and reflections about the frontend

As mentioned before we have used Laravel Blade for the frontend. Though Laravel Blade made it

easier to create the frontend because it is easy to understand and allows us to write plain php code

in our template, there are some drawbacks of using Blade as well. For example, creating dynamic

and responsive user interfaces in Laravel Blade is difficult alone, and requires the use of a tool like

Livewire.

Late in the development process we realized that using a frontend framework like Angular would

have made the development process and setup more difficult, but it would also provide us with

several benefits. It would for example allow for a clear separation between the frontend and backend

of the application, while Laravel Blade tightly couples server-side rendering with the backend logic.

Angular’s separation would make it easier to maintain and scale the project as we could separate

the backend and frontend groups fully and work independently on our respective parts.

Furthermore, Angular is a big framework and offers a robust set of tools and components for building

dynamic and interactive UI. It is also well-suited for building SPA’s, which would provide a smoother

user experience and could also reduce load time for rending pages. In the future, it would be

possible to change the application to use a frontend framework like Angular. Considering this, we

incorporated a Swagger API documentation, which is covered in detail in Chapter 5.6.1.

4.3.5 Challenges in deprioritizing some Requirements

Due to time constraints and changes in requirements, we had to make a prioritization decision

and deprioritize some requirements in order to focus on the most important ones. This allowed

us to successfully complete the key and high-priority requirements as described in chapter 2.2. By

adopting this approach, we were able to ensure that we met the core objectives and delivered the

product on time.

59



Chapter 5

Product Documentation

The product documentation will comprehensively explain the application’s structure and features.

5.1 Description of solution

We have a fully functional application to offer. This chapter will provide details on how we have

implemented the application. We have utilized support libraries for both front and backend develop-

ment, which has been referred to in the source code. These libraries are defined in a ’composer.json’

file.

5.1.1 Architecture

The Laravel application with Blade syntax on the frontend follows a traditional server-side architec-

ture, where the backend handles requests, processes data, and generates responses. This structure

employs the Model View Controller (MVC) pattern, with models representing data structures and

database tables, controllers managing requests, and views rendering HTML output. The Laravel

60



framework includes built-in features and tools to create scalable applications while ensuring code

uniformity and maintainability.

Figure 5.1: Shows how model view controller works

5.1.2 Frontend

Laravel Blade is a templating engine with the Laravel PHP framework. It is simple yet powerful

and lets you use plain PHP code in your templates. All Blade templates are compiled into plain

PHP code and cached until modified, meaning Blade adds zero overhead to your application. Blade

template files use the ‘.blade.php‘ file extension and are typically stored in the ‘resources/views‘

directory. [Larnda]

Laravel Blade is used for implementing the frontend. We opted for Laravel Blade because it can

incorporate plain PHP into our codebase, simplifying the development process. Additionally, regular

61



Figure 5.2: Traditional Content Management System

Figure 5.3: Headless Content Management System

HTML in the code makes it easy to understand and work with.

However, it’s worth noting that unlike websites built using React or Angular, the website we created

using Laravel Blade is static. This poses a challenge when implementing specific features, such as

favoriting a project. Dynamic changes to the frontend can only be achieved by using JavaScript or

frontend frameworks like React or Angular.

Despite this limitation, the benefits and ease of use of the Laravel blade outweigh its drawbacks.

Moreover, our group only has a little experience with frontend frameworks, and learning them would

require a significant amount of time, which wasn’t feasible given our time constraints.

The application’s frontend uses custom Bootstrap and custom JS files taken from a course. [Ari22]

62



5.1.2.1 Architecture

The source code in the front end is separated into two folders, ”resources” and ”public.”

Figure 5.4: Resources folder

Figure 5.5: Public folder

Resources

Resources help to manage and organize assets such as views, images, style sheets, and scripts. Laravel

offers a flexible and robust approach to resource management, making it easy to keep everything

organized and accessible.

One of the most significant advantages of using resources in Laravel is the ability to separate the

presentation layer from the application logic. This makes it simpler to maintain and modify the

codebase as it grows. It also allows for the reuse of components across different application parts,

63



reducing development time and enhancing code quality.

Resources in Laravel are generally organized into directories based on their purpose. For instance,

views are typically stored in the resources/view’s directory, while assets such as style sheets and

images are kept in the resources/assets directory. Additionally, Laravel provides a way to organize

resources based on the context in which they are used through resource routing.

Public

The public folder contains files and code that is accessible to the web. This includes CSS, Javascript,

and other assets needed for the website’s frontend.

5.1.3 Backend

The backend is part of a software application that runs on the server and handles data processing and

server-side logic. The backend is essential to maintaining application performance and security and

directly impacts the user experience. Typical tasks in the backend include creating and maintaining

databases, communicating with third-party APIs, implementing security features, managing server

configurations, and running critical processes that cannot be run on the client.

The organizational structure of Laravel’s backend comprises several levels, each with distinct respon-

sibilities. Its design follows the Model View Controller (MVC) pattern, as shown in figure 5.1, with

the Model layer responsible for data management, the View layer for displaying data to users, and

the Controller layer for managing user requests and facilitating communication between the Model

and View levels.

The Model layer is responsible for data modeling and manipulation, while the View layer consists

of HTML, CSS, and JavaScript files comprising the user interface. The Controller layer mediates

between the Model and View levels, handling user requests and directing data flow.

This layered architecture promotes the separation of concerns, allowing each layer to be modified or

updated without affecting the others. It also enables individual layer testing, which is essential for

developing robust and sustainable software.

64



We have divided our backend into multiple layers. These layers consist of routing, controller, model,

view, and database, as shown in figure 5.6.

Figure 5.6: The layering of the backend

65



5.1.3.1 Models

The Models folder is in charge of data logic, which includes data access, manipulation, and validation.

The models serve as a bridge between the database and the application code, representing the data

units in the application.

Laravel uses Eloquent Object-Relational Mapping (ORM), allowing developers to communicate with

the database using PHP classes and objects instead of writing complex SQL queries. It is much easier

to perform CRUD operations by associating database tables with model classes. [Larndc]

Figure 5.7: Model’s folder

One of the core Models in our application is the Project model. The HasFactory tells us that this

model has a factory class. Factory classes are used to create fake instances of a model. The naming

convention is to combine the model name with the Factory suffix. In this example, the factory class

for the Project model is ProjectFactory.

66



Figure 5.8: Project’s model

67



Figure 5.9: Database fields filled with fake data

In Eloquent, relationships are defined as methods on the Eloquent model classes. Eloquent supports

many types of relationships. More about it can be read in the official Laravel Doc.

The relationships are straightforward; for instance, the relationship between the project and a com-

pany is defined as “Project belongs to (a) company.” And vice versa, in the Company model, we

have defined a method, projects(), which defines the relationship to project class. The relationship

is defined as: “Company has many projects.”

68

https://laravel.com/docs/10.x/eloquent


Since relationships are influential query builders, defining relationships as methods provides powerful

method-chaining and querying capabilities. [Larndc]

We have defined scopes that can help filter unwanted data when fetching data from the database;

the scopes can easily be chained to the methods.

5.1.3.2 Controllers

The Controllers are essential to every Laravel project since it handles user requests and returns

suitable replies. This category usually contains classes that handle different HTTP requests, and

each class has many methods that correlate to different actions being performed on the data. [Larndg]

We have utilized this interface to construct and maintain controller classes, which are used to process

HTTP requests submitted to the server.

When a user submits a request to the server, it is directed to the appropriate controller method

based on the URL and HTTP verb. The controller then processes the data, interacts with the

relevant model, and delivers a response to the user as a view or JSON data.

One of the most significant advantages of using controllers in a Laravel project is that they assist

in keeping an application’s logic structured and manageable. Developers may guarantee that their

code is modular, reusable, and easy to maintain by splitting request handling into various controller

classes. Furthermore, controllers promote the separation of concerns, making testing and debugging

the application’s various components easier.

69



Figure 5.10: Controller’s folder

5.1.3.3 Middleware

Middleware is the software between two components and conducts actions depending on established

rules. It bridges the client and server sides, enabling developers to specify which actions should be

done before or after a request is delivered to the server. [Lar21b]

It includes classes that describe particular actions that must be completed during a request’s lifetime.

We have used middleware for authentication, authorization, data validation, and other activities.

These responsibilities are critical for ensuring an application’s security and stability.

70



Figure 5.11: Middleware’s folder

Our HTTP routes are defined in the web.php file, more in subchapter 5.1.3.6. Every HTTP request is

passed through a set of predefined middleware provided by Laravel, $middleware. An HTTP request

to the web.php class is also passed through the ‘web’ middleware group, which Laravel provides.

71



Figure 5.12: Kernel class

In Laravel, it is also possible to create our middleware, but we did not need it for our project. Instead,

we can also use middleware created by other developers; for example, we used the authentication

middleware.

72



Figure 5.13: Authenticate.php

5.1.3.4 Policies

Laravel’s policies are a helpful tool for managing authorization logic in applications. Policies are

PHP classes that establish authorization rules for specific resources or models. Policies enable us to

regulate resource access based on user roles, permissions, and other relevant factors. [Lar21a]

When a user is not authorized to perform a particular action, the policy will respond by returning

a status code 403.

These are the policies that we have created.

73



Figure 5.14: Policie’s folder

Figure 5.15: ProjectPolicy defines the policy for actions on the Profile model

74



We created the profile policy, which contains methods we utilize for authorization. To use these

methods, we simply call them with → can() within the route:

Figure 5.16: Put request route

5.1.3.5 API Resource

The API Resource class is a middleman between the database and the API response. API Resource

classes allow us to transform the Eloquent models into custom JSON format for API responses. The

Resource class can be instantiated for a single model or a collection of models. [Larndh]

We have used a lot of API Resource classes, but we need to understand how the API Resource classes

work. The API Resource only transforms data when directly returned from a controller method after

an HTTP call. Still, it does not transform data if the API Resource is passed as a parameter to

a view or other methods. But we tried to use the API Resources to transform data passed to the

views, which is improper use. As a result, API Resources did not transform the data because it was

not returned directly from the controller. In the future, if we use other frontend frameworks like

React or Angular, we can use the API routes and return JSON responses using the API Resource.

Figure 5.17: API resources’ folder

75



5.1.3.6 Routes

Routes determine how the application responds to incoming requests. They are responsible for

mapping requests to specific actions in the application, making it easier for developers to manage

and maintain logical units of application logic. [Larndi]

Laravel boasts an intuitive and straightforward routing system that enables developers to define

routes using a fluid and expressive syntax. These routes are defined in the routes/web.php file, the

default location for web application routes. Additionally, these routes can handle various HTTP

requests, including GET, POST, PUT, and DELETE.

For API routes, Laravel provides a separate file, routes/api.php, which developers can use to de-

fine routes that handle requests from external clients. These routes are typically secured using

middleware like API tokens or OAuth authentication.

Figure 5.18: Route’s folder

5.1.4 Sign-on

After we could not implement a federated login in our system, we decided to use another simple

login method mentioned in section 4.2.1.4. This will still provide users with a secure and easy login

process.

76



Figure 5.19: Shows the network requests during the login and register

77



5.1.5 Design and accessibility

Design and accessibility haven’t been a focus, even though it’s crucially important. The principle

behind design and accessibility is to create products, services, or solutions accessible to everyone,

regardless of their physical and cognitive abilities. This involves considering how design can affect

usability, readability, and navigation for people with various disabilities. [Matnd] This includes four

main categories:

Responsive design refers to a design approach where a website is developed to adapt to different

devices and screen sizes, ensuring optimal user experience regardless of the device. [Blind] This

made the application more user-friendly and compatible with multiple devices such as mobile phones,

tablets, and computers.

Universal Design considers all users, regardless of their physical or mental abilities, to ensure that

websites and apps are accessible, requiring technological solutions that work for all users. [Blind]

Universal design ensures inclusively and equal access for a broad range of users, regardless of their

abilities or limitations.

User-friendliness refers to how easy and intuitive a website or application is for its users. [Blind]

Improving user-friendliness will enable the application to reduce frustration and increase user satis-

faction. This can lead to increased user loyalty and positive recommendations.

User experience refers to a user’s overall experience when using a product or service. [Blind] It

will help to emphasize creating a positive user experience. It can also improve the application by

forming a favorable perception among users, increasing their engagement and encouraging long-term

user loyalty.

In the project’s development, we used a predefined Bootstrap template with a specific design and

usability. This could be an efficient way to start since we believed it could save us time in the design

process. However, we did not have time to conduct user testing on the design’s usability for anyone

other than the course coordinator. This could be a disadvantage, as it may result in the design

needing to be optimally adapted to all users, leading to a poor user experience for some.

78



The results from user testing of the course coordinator section of the website were positive in terms of

design and accessibility. This was a good indication that the chosen design works well for users and

is accessible to everyone, regardless of ability. We could not conduct continuous testing throughout

the entire development process, which made it challenging to maintain usability at all times. We

have learned from this that we need to focus more on the frontend when we continue developing

the application or participate in future projects. Therefore, this should be carried forward into the

further development phase.

5.2 Correspondence between requirement specification and

product

The conformity between the requirement specification and the final product was concluded as good

after an acceptance test conducted by the course coordinator. An acceptance test is a formal test to

determine if the acceptance criteria have been met and allow the system owner to accept the system.

Acceptance criteria are defined based on requirements within the scope. [Sjo16]

The course coordinator was pleased with the application submission. This can be confirmed by our

recent user testing session with the course coordinator. Additionally, we observed during testing

that the course coordinator, acting as a user, validated and approved the application’s requirements

but requested a few changes. Please refer to chapter 6.2.1.1 for more details. It is recommended

for both businesses and students to test the application to ensure their specific needs are met.

However, since group and subject coordinators have developed different requirement specifications

for students and businesses and have tested it themselves, we can also consider these applications

as having undergone acceptance testing for students and businesses. To ensure this is accurate, it

should be carried forward into the next development phase after completing the entire project.

79



Figure 5.20: Implementation status of Course coordinator’s functional requirements

80



Figure 5.21: Implementation status of Student’s functional requirements

Figure 5.22: Implementation status of Project Provider’s functional requirements

81



Figure 5.23: Non-functional requirements

82



5.3 Central data structures in the solution

In this section, we will introduce the fundamental data structures crucial to both the frontend and

backend of the solution.

5.3.1 Principles for code development

We have applied to the best of our abilities the principles of code development while creating our

web application. Our goal was to build a maintainable application that can be used and improved

by other developers in the future.

5.3.1.1 Modularity

Modularity is a software development principle that involves breaking down a codebase into inde-

pendent and self-contained modules or components that can be developed, tested, and maintained

separately. This approach improves the quality of the code, makes it easier to maintain, and enables

developers to work on different parts of the codebase concurrently. [WG12]

Modularity was a primary focus during the development of our application. By incorporating Git

branching and embracing a modular approach, we were able to concurrently collaborate on various

parts of the codebase without interfering with each other’s work.

5.3.1.2 Object-Oriented Programming (OOP)

OOP is a software development approach that uses reusable and modular units called ”objects” to

represent real-world entities. Objects encapsulate both data and behavior. Using OOP results in

cleaner and more maintainable code. We have many model objects that represent real-world entities

such as Project and User model. These models are also used to talk with the database through

Laravel Eloquent model binding. Using models made the development process much easier.

83



5.3.1.3 Separation of Concerns

Separation of concerns means breaking code into parts, each responsible for a specific task. For

example, separating UI from business logic. Following this concept made it easier to modify and

maintain the software without affecting other parts. Also it enabled us to code concurrently, where

one group could focus on creating the best UI/UX, while the other worked on backend and providing

data for the frontend. We have reflected over what could have been done differently to better achieve

“Separation of concerns” in chapter 4.3.4.

5.3.1.4 Don’t Repeat Yourself (DRY)

The concept of DRY means avoiding unnecessary repetition or duplication of code or logic. DRY

encourages developers to develop reusable and modular code. This is a fundamental knowledge

among all developers, but following it was not always easy for us because many times we did not

know where to put a certain method or logic to make reusable in the correct way.

5.4 Database

5.4.1 Factories

We have used Laravel Faker, which is a useful tool for easily creating realistic and diverse datasets.

It offers various types of fake data and simplifies the process of generating test data or populating

databases. By using Laravel Faker, you can improve the quality of test data, simulate real-world

scenarios, and save time and effort with just a few lines of code. We did this to test our database

model and verify that it functions as intended.

The ’Factory’ class in Laravel allows developers to create model instances and modify their attributes.

[Larndb] For example, in our ’ProjectFactory’, we generates fake data for the ‘Project‘ model, as

shown in figure 5.24.

84



Figure 5.24: Project factory from SIM application

5.4.2 Migrations

We used Laravel’s migration to build and manage the database in development on our application.

Migrations simplified the process of defining and modifying the database schema, including creating

tables and defining columns as we can see in figure 5.25. In addition, they functioned as a version

control system for the database, which could enable easy tracking and use of changes. Laravel

migrations have made database setup and maintenance in Laravel much easier and more efficient.

85



Figure 5.25: Showing the migration code for the user’s model

5.4.3 Seeders

Seeders serve as useful helpers to incorporate the initial dataset into a database. They are par-

ticularly valuable during testing or at the beginning of a new project. Utilizing seeders can be a

time-saving strategy, especially when dealing with extensive databases that require significant data

entry.

We used seeder classes to insert the fake data into their respective and corresponding tables. This

aided us in both testing and verifying the adequacy of the database structure.

86



5.5 Security

5.5.1 Secure Development and safety measures

Information Security is one of the most critical parts of IT. The lack of knowledge in the security

field can become critical for each company that is taking advantage of a website. [Moo16] There-

fore, security will be in the focus of the application development throughout the entire process. To

strengthen the security of our system/application, we first need to find potential threats and weak-

nesses. The weaknesses may appear insignificant initially, yet failing to take action could result in

losing everything. Detecting these weaknesses and providing secure solutions is therefore essential

for our application.

We are using the programming language PHP together with the framework Laravel. PHP alone does

not contribute to any security for the user. The framework Laravel, however, provides many built-in

safety features one can receive numerous benefits from. Therefore Laravel is a good option because

it includes many safety features. Some safety features come ”out of the box” and are already

used. Examples of the features available in Laravel are Password Hashing, Authentication, SQL

Injection protection, XSS protection (Cross-Site Scripting), and more. We have taken advantage of

all the safety features mentioned using PHP Laravel. Password Hashing and Authentication were

done manually, Injection protection was done both manually and automatically (Input validation

was done manually, while SQL injection protection is automatically configured by Laravel). XSS

protection was also done automatically by Laravel.

5.5.2 Risk Assessment and Threat Modeling

Risk assessment searches for potential threats and risks in a system is very typical amongst businesses

to have a risk assessment performed by security analysts. Threat modeling is a common practice

to achieve this. We developed a threat model using STRIDE and DREAD methodology to perform

a risk analysis. These methodologies make the assessment more detailed and precise because they

can list what safety measures and security mitigation’s to prioritize. In this risk assessment, the

score numbers will range from 1-10. There is no ”correct” range; some use 1-3 or 1-5. Due to its

87



contribution to a more detailed analysis, we selected 1-10.

Figure 5.26: Example of Risk Matrix. Retrieved from [smand]

On the x-axis, we have severity; on the y-axis, we have probability. This matrix will be used as

inspiration when creating our own personalized risk matrix to rank the risks and threats. In order

to create a risk matrix, we one must dive deeper into the STRIDE and DREAD methodologies to

create a risk matrix.

88



Figure 5.27: Definition of Stride. Retrieved from [Larndj]

Figure 5.27 above explains what each of the letters in the word STRIDE stands for, along with the

information security pillar it belongs to and the definition of the threat.

89



Figure 5.28: DREAD in Risk Matrix. Retrieved from: [SSB13]

Figure 5.28 is an example of a Risk Matrix using a DREAD methodology. Instead of STRIDE on

the Y-axis, this matrix includes specific threats. Creating the risk matrix relies on the nature of the

development process and the tools utilized. In our case, we are using the highly popular STRIDE.

STRIDE was created by two engineers at Microsoft. [Don21] We decided to use STRIDE because one

of our group members personally has used STRIDE to perform a risk assessment for the company

Finterai. This was very efficient and made the risk assessment both comprehensive and detailed.

We need to create a risk matrix to rank the different threats the platform could face. The risk

matrix combines the consequences alongside the X-axis and the probability of occurrence along the

Y-axis. Nevertheless, we used STRIDE and DREAD to create our first version of the risk matrix to

provide a more detailed risk assessment for the web application. DREAD will be along the X-axis,

and STRIDE will be along the Y-axis.

The ranking we will use for the Risk Matrix will be as follows:

90



Figure 5.29: Risk Matrix Ranking

Figure 5.30: Risk matrix with STRIDE and DREAD (first edition)

After further discussion, we concluded that extending the matrix was necessary. Now that we have

the total rating of each type of threat, we can further develop the matrix. To do this extension,

we can use the total rating from our first version of the risk matrix as the Y-axis and probability

as X-axis. We decided to do this extension because the matrix did not consider probability. The

tampering threat is an excellent example of inaccuracy because of the lack of probability. It was the

only threat that resulted in a critical rating. It is improbable for a hacker to tamper with the data,

making the situation unrealistic. After all, it would have zero benefits for the hacker performing the

91



attack. So even though a potential tampering attack would be harmful, the chance of it happening

is minimal.

To make the extended version of the risk matrix, we needed to round off the ratings from the risk

matrix and divide it by 10. Because we want to match the rating scales and consider probability,

we will use a scale of 1-4, consisting of low, medium, high, and very high, to create a risk matrix.

The final score is Rating + Probability divided by two.

Figure 5.31: The extended risk matrix (final version)

Now that we have a complete Risk Matrix with the final ratings, we can analyze what threats

and vulnerabilities to prioritize and create solutions for throughout this project. As seen in the

Extended Risk Matrix, “Tampering”, “Information Disclosure” and “Elevation of Privilege” were

the highest-scoring threats. We are mainly focusing on “Information Disclosure” and “Elevation

of privilege” because it is very realistic that this could happen. The chance of a tampering attack

is improbable since the hacker will not benefit. Let’s have a further look into OWASP before

implementing solutions.

92



5.5.3 OWASP

The Open Web Application Security Project (OWASP) consists of 32,000 volunteers from all across

the globe who perform security assessments and research to help website owners and security experts

protect web applications from cyber attacks. [Par22] It is also essential to note that OWASP is con-

sidered a non-profit organization. We have used OWASP’s Top Ten, a standard awareness document

comprising web applications’ top ten most critical security risks. This document is updated every

three or four years.

Figure 5.32: This is the OWASP Top Ten 2021. Retrieved from [OWAnd]

Figure 5.32 gives us information about the top ten security threats to focus on during the applica-

tion development. Laravel protects us from the third and tenth security risks, Injection and XSS,

respectively. It is also possible to manually use other in-built safety features in Laravel to further

protect the web application. Although, one has to consider that the Top Ten from OWASP is more

general, while our Risk Matrix is more specific toward our application. The OWASP Top Ten and

our extended Risk Matrix combined give us a great indication of what to focus on. OWASP A01

correlates to “Elevation of Privilege” from the Risk Matrix, and OWASP A02 correlates to “Infor-

mation Disclosure” from the Risk Matrix. Therefore providing secure solutions for these two fields

93



is necessary.

5.5.4 Security solutions for the application

Protection from “OWASP A01 - Broken Access Control”

One solution that can protect broken access control is to deny all access by default and adequately

specify the degree of access in the code. We have used Laravel Breeze to create a fully working login

and registration page with authentication control. The authentication protocol is made using Mid-

dleware. See 4.2.1.4 - Single Sign On and and 5.1.3.3 - Middleware for more about the authentication

process. Our authentication protocol is secure and protects against OWASP A01.

Protection from “OWASP A02 - Cryptographic Failures”

In our application, we have used Bcrypt, a password-hashing algorithm. Niels Provos and David

Mazièrez developed this algorithm based on the Blowfish Cipher, a symmetric-key block cipher

requiring only a single key to encrypt and decrypt data. How it is perceived is considerably faster

than asymmetric encryption. [Tecnd] Blowfish Cipher also has no practical cryptanalysis to this

date, meaning that no one has been able to crack the Blowfish Cipher. So because of the speed

and reliability of the Blowfish Cipher, we decided to use Bcrypt to encrypt the sensitive data that

the users of our application will provide. We are protected from “Cryptographic Failures,” the

second-ranked security risk from OWASP’s Top Ten 2021. Although, it is essential to note that our

collected sensitive data gets vulnerable if the Blowfish Cipher algorithm is cracked. In this case, we

need to change the password-hashing algorithm as fast as possible to avoid potential data leakage.

Validation for input fields and checkbox

We have implemented input validation and checkbox validation to secure our application. For

example, we display error messages when a user tries to register with an existing email or a password

shorter than eight characters, see figure 5.33 This validation also provides protection against injection

attacks, addressing OWASP A03. Additionally, we use checkbox validation for agreeing to our Terms

& Conditions during registration. This way, the user needs to agree before creating an account, see

figure 5.34

94



Figure 5.33: Input validation in the registration page

Figure 5.34: Checkbox validation in the registration page

Figure 5.35: Terms & Conditions link

5.5.5 Terms & Conditions

Creating Terms & Conditions can be difficult, especially when no members have a specialization or

deep knowledge of the law. Usually, lawyers and others with political knowledge create the Terms &

Conditions. Therefore, our Terms & Conditions are less advanced than, e.g., Google’s. Nevertheless,

we have included the essential parts to inform the users of the web application and protect us from

95



potential exploitation and abuse of the web application. In order for a user to create an account,

they have to agree with our Terms & Conditions, which they can read in the registration page (see

Figure 10).

Essential things to include in the Terms & Conditions are:

• User Guidelines

• Safety and protection of data

• Termination clause

• Disclaimer for third-party applications/services

• Agree button (checkbox)

See appendix A.6: User Guidelines

5.5.6 Secure development in practice

Creating an unreachable system or application with zero vulnerabilities is impossible. Therefore,

it is essential to maintain the application’s security by constantly updating the security protocols,

adding new safety features and mitigating potential attacks. We have taken the web application’s

security very seriously by analyzing and implementing secure solutions for our application’s most

critical and relevant security risks. Although we have put in a lot of effort to strengthen and maintain

the security of our platform, no system or application is 100% secure. No company can be secure

because humans write most code. Humans make mistakes and simply can’t write perfect code.

5.5.7 Reflections on login and authentication method

We were initially going to use Feide as our login method. We wanted to use Feide because it would

make the registration process much more efficient. Their effectiveness is because the students would

96



not need to create a new user but instead log in with their already created Feide account. This

method also ensures that the students are honest. In addition to this, Feide is also very secure

because they are taking advantage of MFA, which stands for . MFA means that you can provide

more than one form of authentication. Today, there are several ways to bypass login methods that

only use one-factor authentication, such as performing a brute-force attack. Therefore, we needed

another alternative to protect us from attacks like this.

Even though we wanted to use Feide, we found out that to use this login method; we had to be

registered as an official organization to request Feide as a login and authentication method. In

addition to this, we had to create another form of login method as well if we wanted to use Feide,

because the external companies do not have Feide. Therefore, we tried a second alternative, which

was AzureAD’s authentication method. This login method lets the users choose an additional form

of authentication. This provides considerably more user security and protects them from brute-force

attacks. Sadly, we did not manage to set up AzureAD, as it was a very time-consuming and complex

process. Therefore, we decided to pause the AzureAD authentication implementation temporarily

and instead focus on the main functionalities of the application.

The third alternative was to use Laravel Breeze, a pre-made login implementation. We chose this

alternative because of its effectiveness. The purpose of Breeze is to provide a fast and straightforward

login page. Something we should have taken into consideration when choosing Breeze was the need

for more security features. We later discovered that Laravel had another template called Laravel

Jetstream, which had built-in security features like e.g. MFA. In other words, Breeze is like a lite

version to provide effectiveness, while Jetstream is a complete version with more features. Getting

the same safety features for Laravel Breeze is possible but very time-consuming because they are

already set up and ready to use in Laravel Jetstream.

5.6 Relationship to machines/databases/OS

In this subsection, we present the functional interfaces of the system. We have chosen to use API

connections as a crucial link between the frontend and backend. This application runs on containers,

making the operating system less critical for its execution. We also have expectations that the system

97



will function seamlessly on all types of operating systems and both older and newer web browsers.

5.6.1 API documentation

The API documentation provides valuable information to clients and developers about the available

endpoints and how to interact with them. Clients can access and use the server’s resources by

following the instructions provided in the API documentation. Developers can also extend or modify

the server’s functionality by referring to the documentation.

For a REST API, the documentation typically includes an overview of the available endpoints and

the expected input and output formats for each endpoint. A tool like Swagger UI often presents this

information through an interactive interface, making exploring the API documentation and testing

API requests easier.

Figure 5.36 is a visual representation of the available endpoints in the REST API, which can be a

helpful reference for both clients and developers to understand the structure and organization of the

API.

98



Figure 5.36: Swagger API documentation

99



5.6.2 Database Integration

The database’s interface and backend communicated via localhost server that required a login con-

sisting of a username and password. MySQL was used to set up a publicly accessible database

resource. The database configuration file is shown in the figure below, with the username and

password.

Figure 5.37: MySQL database configuration file

5.6.3 Main parts of the program

Company - Adds project proposal

For companies who wish to post projects, the application can offer a simple and user-friendly inter-

face. The company can create an account and then post a project description with the necessary

details required to attract students. This may include details about the project’s duration, require-

ments for the participating students, and expected prior experience and competencies.

Course Coordinator - Quality assurance of the project proposals

The course coordinator’s task is to ensure the quality of project proposals by carefully reviewing each

proposal. They must verify that the proposals are relevant to the subject and within the students’

area of expertise. By approving project proposals before they are posted on the system, the course

coordinator can ensure that the projects meet a certain standard and are of high quality. This is

a crucial function to ensure that students have access to quality projects and that the companies

100



posting projects are serious.

Student - Applying for the published projects

Students can then apply to participate in projects that match their interests and skills. They can

apply through a simple interface that allows them to find and filter projects based on various criteria

such as subject area. Once they have found a project they want to participate in, they can submit

a request that the company can review and approve.

101



Chapter 6

Testing

6.1 Introduction

We conducted tests to ensure the quality and reliability of our application, which we created using

the PhpUnit framework and the Laravel built-in testing library. To accomplish this, we utilized a

range of tests, such as unit tests, integration tests, and smoke tests, to uncover and correct any flaws

or problems in the application.

Our testing had several specific aims, including identifying errors or bugs in our code, enhancing

code quality and maintainability with automated testing, confirming that the application met user

expectations and requirements and boosting confidence in the application’s reliability and stability.

Using the framework PhpUnit, we run 138 test cases for all test types during the testing process.

Our team of five developers and with the help of our course coordinator also performed usertesting

of the application over four to five weeks. We used Notion to report and monitor the results.

102



6.2 User Testing

6.2.1 Testing under development phase

6.2.1.1 User Tests done by course coordinator

During the development phase, we conducted user tests as an integral part of our application de-

velopment process. To introduce a user test with the course coordinator, we built upon a template

(see appendix A.3) from a practical IT project in the previous semester and further refined it for

our bachelor thesis (see appendix A.4). The primary objectives of these tests were to prioritize and

identify the essential functions of the application, aligning with the assumptions made during the

design sprint and gather targeted user insights.

6.2.1.2 Feedback/result

The course coordinator provided feedback on the functionality and design for all actors within

the application. Overall, the coordinator expressed high satisfaction, stating that the application

precisely met their preconceived expectations and desires. The project course coordinator wanted

us to change the following. See Table 6.1, 6.2 and 6.4.

We organized tasks based on the priority, with 1 being the highest priority. This means we focus on

completing priority 1 tasks first before moving on to priority 2 tasks.

103



Functionality and design for company overview

Changes needed Priority

Receipt or confirmation page which

comes before finally submitting

1

Status options with descriptions of

the different statuses when hovering

or clicking, same goes for the other

columns

1

Hyperlink in agreement-page 1

All projects, current projects, archived

projects

1

Toolbar at bottom instead of at the top 2

Column visibility standards should be

very simple, Title and Status

2

Export button, copy to excel, copy to

PDF, column visibility should be re-

moved

3

Menu icon needs to change 2

Minimum amount of data, maximum

amount of information

3

Swap My Projects and Need Changes.

If they have no projects published or

no projects needing changes should be

removed

2

Overview of deadlines on dashboard 3

All projects get archived at the end

of the semester, archived projects

get placed in the archives by status

“ARCHIVED”

3

Table 6.1: Company requirements

104



Functionality and design for course coordinator

Changes needed Priority

Add project needs some type of connec-

tion to the supervisor who is responsible

for that specific project

1

Updated Projects: split into Changes

Made and Need Changes

1

Projects Overview should include:

New, Under Review, Archived

1

Only need Company Name and Project

Title

1

A project should include Company

Name, Project Title, primary supervi-

sor, company email

2

Can be up to three supervisors per com-

pany

3

Table 6.2: Course Coordinator’s requirements

105



Functionality and design for Student

Changes needed Priority

Students status : APPLIED, NOT AP-

PLIED, UNDER REVIEW and CON-

FIRMED

1

Student registration: number of stu-

dents (dynamic display), status (con-

firmed/not confirmed) which is linked

to a specific project

1

Dashboard for students: should include

the status of the projects the student

has applied for

2

Table 6.3: Student requirements

6.2.1.3 Response to the Feedback

The user testing we conducted with the course coordinator regarding functionality and design took

place in early May. Unfortunately, we did not have enough time to implement the new requirement

based on the feedback received, unless the following conditions are met.

106



Tasks implemented after user-test

Tasks Priority Actors

Hyperlink on agreement page 1 company

Swap My Projects and Need Changes.

If they have no projects published or

no projects needing changes should be

removed

2 company

Students status : APPLIED, NOT AP-

PLIED, UNDER REVIEW and CON-

FIRMED.

1 student

Table 6.4: Tasks implemented after user test

6.2.1.4 Student-led User Testing

Due to time constraints that prevented us from carrying out the planned user survey, we opted for

an alternative approach. We conducted a test involving five participants from OsloMet focusing

solely on the student role. These participants were granted access to the student roles and given

the ability to create their own user accounts. A specific/predefined flow was assigned to guide their

actions during the test. The user test was conducted using an interview guide, which can be found

in the appendix A.5.

Afterward, we asked them to navigate through the course coordinator page and test the functionality

themself. Some gave us feedback on what worked well and what could be improved on the website.

Finally, we asked them to test the entire website and give us their thoughts randomly. they gave us

multiple feedback points, summarized in the table below. Some of them, also checked the security

aspects, such as input validation, to ensure proper notifications. They also tested for SQL injection

vulnerabilities in input fields, console logs, and web application inspection.

From this feedback, we gained insights that the users understood our search function, for example,

and what was behind it. However, the users, for example, expressed dissatisfaction with the function

107



on the column visibility dropdown. We also noticed that some users were not entirely sure what

using “all” meant for all actors. These insights were noted based on their significance on the table

list, as shown in Table 6.5. These insights were then used to prioritize and improve the application’s

features to meet our users’ needs better.

Strengths of the Application Areas for Improvement in the Applica-

tion

Navigation Specify Actors: Avoid using ’(All)’ for

actors and be more specific. Use ’Only

students’ instead of ’All students.’

Searching and filtrering Logo Link: Remove or add a logo

UI - user friendly and responsive, nice

combination of colors

course coordinator profile view: Include

profile image URL in course coordina-

tor profile view

Layout Password Criteria: Avoid using num-

bers only and set a maximum length for

passwords

SQL injection was approved Dropdown Placement: Place the drop-

down under the ’Column Visibility’ sec-

tion

Website Status: almost complete with

minor functionalities

Remove Options: Eliminate ’Approve’

and ’Need Changes’ options from the

company’s interface

Course coordinator Interface: Well-

Structured and User-Friendly

Profile Image Display: Fix profile image

display issue on Google Chrome

The area code needs to be fixed

Larger Headers: Increase header size

for better readability

Table 6.5: Feedback of student test

108



6.2.2 Limitations and Challenges in User Testing

This point is essential to highlight. Collecting personal data without proper authorization is illegal

in many countries and can lead to severe consequences for the data collector. Therefore, following

proper procedures and obtaining permission before collecting personal data is always advisable.

[Comnda]

Our initial plan was to conduct in-depth user-tests and interviews, which required the collection of

personal data and information (such as key demographic data) . We applied for permission from

SIKT to collect personal data (see Appendix A.7). However, as we did not get a timely response, we

had to resort to our plan B and conduct the user testing anonymously without registering personally

identifiable information.

As a group, we planned to distribute a digital survey to the participants for the user survey. The

survey was designed to include scaling questions and yes or no answers. We also intended for each

participant to receive a digital form or sheet to provide any helpful input or quotes from the tests.

Unfortunately, we could not send the survey digitally as intended initially due to time limitations.

6.3 Technical Testing

6.3.1 PhpUnit and Laravel’s built-in testing library

PHPUnit is a programmer-oriented testing framework for PHP that allows us to use PHP code

to test our application. It follows the xUnit architecture for the unit testing framework. PHPUnit

supports various types of testing, including unit testing, integration testing, and smoke testing.

At the same time, Laravel’s built-in testing library provides tools and functions to test Laravel

applications. It simplifies testing by offering test case classes and assertions to verify application

behavior and functionality. [Joh23]

109



6.3.2 Unit Test

“Unit testing involves testing a single method of a class, focusing on a specific contract aspect with

stubbed or mocked dependencies.” [Fre09]

During PHP Laravel backend development, developers utilized unit tests with PHPUnit to validate

the functionality of isolated functions or classes. They employed various assertions, such as assertE-

quals(), assertTrue(), and assertFalse(), to test code outputs and ensure accurate error messages.

[Larnde] [Bernd]

We utilized the PHPUnit framework to test the functionality of the “updateProject” method, which

involves retrieving a project’s object from the database. First, we prepared a “mock” project data

and an expected return value. Then, we evaluated the method to ensure that it returned accurate

information and triggered an error message if it failed before testing it with actual data.

110



Figure 6.1: Example code of Laravel’s built-in unit test

Using mock project data allowed us to avoid using actual data from the database in the test, which

would have made it more time-consuming to set up and execute. Overall, using the framework

PHPUnit and the library Laravel built-in tests for testing during development helped us catch

errors early and ensure that individual code units worked as expected, see figure 6.1.

6.3.2.1 Basics of Defect Tracking

We prioritize the sequence in which we address defects and indicate the severity of a bug’s impact

on the software’s functionality. Within software development, priority pertains to the degree of

significance of a defect that necessitates resolution before moving on to the next one. In contrast,

severity concerns the effect of a bug on the system. Due to its increased criticality, a bug with higher

111



severity requires prompt resolution regardless of its priority level.

As figures 6.2 and 6.3 illustrates, we employed the notion of tracking bugs. We effectively man-

aged and prioritized bugs according to their severity and priority levels, ensuring that we promptly

addressed critical issues.

Figure 6.2: Defect tracking rules

112



Figure 6.3: Defect tracking overview

6.4 Feature test

“Integration testing ensures proper interoperation between subsystems, ranging from class integration

to production environment integration.” [Fre09]

Laravel’s Eloquent ORM and PHPUnit’s integration testing framework enable developers to assess

the application’s acceptance comprehensively. This includes testing database interactions and other

113



components. [Ind22] Laravel provides an in-memory SQLite database for evaluating application

interactions without impacting the live database. [Larndd]

In Laravel, tests in the ”Tests/Feature” directory verify route responses. For ”updateProject,” a

PUT request is made to the ”project.update” route. Using assertStatus(), we confirm a successful

update (code 302) that redirects correctly. assertDatabaseHas() ensures the updated project data

is stored in the database, as shown in figure 6.4.

Figure 6.4: Integration Test - course coordinator project update scenario

6.5 Smoke test

“In the software development life cycle, developers perform smoke testing to verify code compilation

and core functionality. Only after passing this initial test different levels of testing are conducted.”

114



[Kumnd]

We developed test cases for various situations, including high traffic and adverse conditions, to ensure

the application can manage expected traffic volumes and provide a satisfactory user experience.

Figure 6.5 illustrates that the tests involve requesting the application’s routes and verifying the

correct responses. For instance, a ”companyView” smoke test might use the GET request method

to the ”project” route name and then utilize the assertViewIs() method to ensure that the response

value of ”project.project.all” corresponds to the appropriate view page.

Figure 6.5: Testing Company View Retrieval

115



Figure 6.6: Testing Project View Under High Request Traffic

As depicted in figures 6.5 and 6.6, the ongoing smoke testing aims to determine whether the ap-

plication performs accurately under high usage and unfavorable circumstances. This testing helps

detect potential issues such as compatibility problems and performance inadequacies.

6.6 Challenges in technical testing

Based on our experience with JUnit testing, it was challenging to set up xdebug (see: 3.3) and

start using phpunit testing early in the development phase. This made us uncertain about the

differences between smoke and unit tests, as both types could be done at the same time during

early implementation. To get started, we had to spend time going through Laravel’s documentation.

Later, we discovered PHP traits, which could make the testing process easier. Traits are like reusable

bundles of code that add functionality and reduce repetition. Our lack of knowledge about traits

caused confusion with smoke and unit tests, so we had to rely on the documentation, which slowed

down our progress.

We faced additional challenges in our development process, including the need to modify tests due

to changing requirements, potentially slowing down our progress. Furthermore, the implementation

116



of the application took longer than expected, extending until mid-May. As a result, we were unable

to implement the planned integration tests, which aimed to test the interaction between different

components of the system.

6.7 Correspondence between accurate test coverage and ideal

test coverage

Although there is no universally mandated minimum percentage of test coverage for software de-

velopment projects in organizations, certain industries may have specific standards that dictate a

certain level of test coverage.

Like many organizations, the Norwegian insurance company requires that its systems have a test

coverage of at least 80%. It is worth noting, however, that this is the minimum requirement,

and organizations often aim for a higher test coverage. The solution should have implemented

considerably higher test coverage for the PHP Laravel application. [Heu21] [Żur21]

Code coverage is a way to measure how well our tests cover the code we write. It tells us the

percentage of our code that is actually tested by automated tests. This helps us see which parts

of our code are being tested and which are not. Code coverage also helps us find functions in our

code that are not being used but are still counted in the coverage report. By aiming for higher code

coverage, we can have more confidence in the quality and reliability of our application. Figures 6.7

and 6.8 provide visual examples of code coverage.

117



Figure 6.7: Code Coverage Analysis: Examining Tested and Untested Code

Figure 6.8: Early Stage Code Coverage Analysis for SIM Application

This report, shown in figure 6.8 , analyze our application’s code coverage (SIM) using the PHPUnit

vendor and offers suggestions for enhancing coverage in the future. Our test coverage is 63% for

lines, functions, and methods and 28% for classes and properties. This coverage metric typically

includes both our application code and the code from the vendor dependencies, which are external

118



components used by our application. While this is a positive starting point, there is room for

improvement, particularly in covering models, views, and controllers within the HTTP context,

which currently need more coverage. Additionally, it is essential to ensure that our tests include

edge cases and handle potential errors effectively.

Looking at the coverage distribution by functions, methods, and lines, we can see that some areas

of our code are well-tested early while others are not. Our controllers (path:http/controllers) have

72% coverage, while our models only have 19%, and the View has 50% coverage. This suggests we

write more tests for everyone, especially for views and models, to ensure they behave as expected.

Based on our analysis of the coverage distribution, we have prioritized testing our controllers during

the development phase to ensure steady progress. Regarding real test coverage for PHP, our backend

controllers currently have a medium coverage of 81.07%. This percentage represents the line of code

covered by structured unit testing. For a visual representation of the test coverage, refer to figure

6.9.

Figure 6.9: Code Coverage Analysis for SIM Controllers

119



Chapter 7

User Guide

7.1 Registration and Login

7.1.1 Common Login Page For All Actors

The login page is the entry point to the Student Intership Matchmaking (SIM) web application. It

allows users to log in, reset their password, or create a new account. All three actors have the same

login process, while the registration process is only common for the project providers and students.

In other words, it is not possible to create a user with the role “course coordinator” for security

reasons. Figure 7.1 illustrates the login page layout.

120



Figure 7.1: The login page

7.1.2 Common Password Reset

If users forget their password, they can initiate a password reset process by clicking “Forgot your

password?” on the landing page. The system will prompt them to provide their email address to

receive an email for a password reset. Figure 7.2 shows the password reset page.

121



Figure 7.2: The password reset page

Figure 7.3: The password reset mail

122



7.1.3 Create an Account

Users who do not have an account can easily create one by selecting “Create an account” on the

login page.

Figure 7.4: Link to the account creation form

In order to proceed, individuals are required to fill in the form and complete the registration process.

They can either register as a company or as a student.

Figure 7.5: Here, you can specify the type of account you wish to create

123



To complete the registration process, individuals must adhere to the validations rules of the appli-

cation which we already discussed in chapter 5.5.4.

After registration, users receive an email to verify their email address. Figure 7.5 displays the

registration page, and Figure 7.6 shows the verification email.

Figure 7.6: The verification email

7.2 The Core Flow Of The Application

Company Flow

After freshly creating a company-user, also referred as company-representative, and logging in the

company-user will be directed to the dashboard. Currently, you won’t see any content as no projects

have been created yet.

124



Figure 7.7: The company’s dashboard

To create a project proposal, the user can select the ‘Add Project’ option from the side navigation.

Figure 7.8: ‘Add Project’ option from the side navigation

To create a project, the user must first create a company as the newly created account does not

have a company yet.

125



Figure 7.9: Create a company first

Figure 7.10: Example data needed to create a company

126



Figure 7.11: Company created successfully

Having a company allows the user to create projects, ensuring validation and ownership by the

company rather than the user. This approach accommodates future changes in personnel or repre-

sentation within the company while maintaining project continuity. Thus, it is more advantageous

to link projects to companies rather than directly to users.

Create project proposal

The user must complete three sections to create a project proposal. Some inputs are required,

while others have validation rules that must be followed in order to successfully create a project

description. The company-user will now create a project proposal.

Note “Aims” input field is empty, which will cause a validation error. However, this

error occurs after we have been on page 4 and clicked on the submit button.

127



Figure 7.12: Page 1, General project information

128



Figure 7.13: Page 2, Project details

129



Figure 7.14: Page 3, Project agreements page

130



Figure 7.15: Page 4, final step to submit the project proposal

As mentioned above, missing a required field will prevent project submission, resulting in a validation

error. The existing input will remain unchanged and unaffected.

Figure 7.16: Back to page 1, validation error message

After creating the project, it appears under “All projects.”

131



Figure 7.17: Project proposal created successfully

Upon creating a project, it is displayed under the section labeled “All projects.” However, for

company users, we have renamed it to ”My projects” as we believe it is more meaningful in that

context.

Figure 7.18: Project proposal appears in “All Projects” table with status “NEW”

132



Course Coordinator Flow

After logging in, the course coordinator is directed to the Dashboard, which offers a comprehensive

overview of vital information. This version of the dashboard was developed through multiple reviews

and discussions to identify its most essential components. It presents various statistics and provides

an overview of new and updated projects.

Figure 7.19: Course coordinator dashboard where there only projects with status “new”

Figure 7.20: Overview of various statistics

133



Figure 7.21: Overview over all projects with status “NEW”

Figure 7.22: Currently there are no projects with status “UPDATED”

Extra functionality: The dashboard for the course coordinator also contains a toolbar

giving the opportunity to edit the table view (column visibility), filter projects, copy

projects to excel or save it as a PDF’s.

Figure 7.23: Toolbar

134



Quality ensuring project proposals

Creating project descriptions from project proposals used to be a slow and manual process for our

course coordinator. It involved copying and pasting from Nettskjema to Microsoft Word and then

exporting as PDF for students. Our application automates this entire process, providing a highly

efficient solution. This view shows the project description, which will be visible for students once

the project is published.

This view shows a project proposal. The course coordinator can choose to ”Approve,” ”Edit,” or

request changes by clicking on the ”Need Changes” button.

If the course coordinator chooses to ”Approve” a project, the project will become visible and pub-

lished to students.

If the course coordinator chooses to ”Edit” a project, he can add the necessary information they

believe is required before it is published to students.

Figure 7.24: Course Coordinator approves a project

The course coordinator can request changes to the project by clicking on the ”Need Changes” button.

This opens a modal form where a message to the company can be created which addresses what

changes are needed. Once the modal is submitted, the project will get status “NEED CHANGES”

and the message attached as a comment, which the company user can view.

135



Figure 7.25: Course coordinator requesting changes

Figure 7.26: Course coordinator addressing changes needed to the project proposal

136



Figure 7.27: Change request sent successfully

The course coordinator can conveniently access an overview of all projects and their current status

by simply clicking on ”All projects” in the side navigation.

Figure 7.28: “All projects” link in the side navigation

If it says ”Published,” it means the project has been processed and quality checked by the course

coordinator and is now visible to students.

If it says ”New” under the status, it means the project is new and requires quality assurance/approval

from the course coordinator.

If it says ”Needs Changes,” it means the course coordinator has requested changes to the project

proposal and sent it back to the corresponding company for modifications.

137



Figure 7.29: Overview over all projects

Back To Company Flow

After a change has been requested from the course coordinator, the company user can view the

request in the dashboard. On the left side, all the projects owned by this company appear, while on

the right side, a window specifically for the projects that need changes is displayed.

Figure 7.30: Company dashboard after receiving a change request on a project proposal

138



Figure 7.31: More details about the project in the dashboard

139



Figure 7.32: The changes have been done by the company

Figure 7.33: Company representative modify an existing project proposal

140



Figure 7.34: Company representative modify tags of an existing project proposal

Figure 7.35: The company representative submits changes to existing project proposal

Figure 7.36: Project updated successfully

Company representatives have multiple means to verify the successful update of a project. Firstly,

they receive a clear indication of success through a success message following the submission of

changes. Additionally, they can gain an overview of all projects owned by them by navigating to the

”All projects” section in the side navigation. They can confirm the update by observing the changed

status of the project proposal, which should now reflect as ”UPDATED.” Furthermore, they have

141



the option to double-check by accessing the edit view and thoroughly reviewing the updated project

proposal.

Figure 7.37: Company-representative views all projects owned by them

Back To Course Coordinator Flow

After changes have been made to an existing project proposal by the company, it appears under the

“Updated projects”-table on the course coordinator’s dashboard.

Figure 7.38: Overview of the updated projects on the course coordinators dashboard

The course coordinator approved the project and published it. It will now be visible to the students

142



as well.

Figure 7.39: Success message, project proposal submitted

Student Flow

After that the project was approved by the course coordinator, it appears on the students’ dashboard.

That students can apply for one or multiple project proposals. After a student applies for a project,

they will be added as an applicant to the project and become visible to the company. The company

can then either confirm, approve, or reject the student’s application.

Figure 7.40: Overview of the projects on the student dashboard

That students can apply for one or multiple project proposals. After a student applies for a project,

they will be added as an applicant to the project and become visible to the company. The company

can then either confirm, approve, or reject the student’s application.

143



Figure 7.41: Overview of one of the project’s proposals

7.3 Common Functionalities for all actors

Profile functionality

Before:

The profile can be seen here. Changes can be made to it by simply clicking on the ”Edit Profile”

button.

144



Figure 7.42: Overview of the profile page

A new window will be opened with profile details that can be changed.

Figure 7.43: Overview of the profile details

The profile after the changes have been made.

145



Figure 7.44: Overview of profile page after changes

If the wrong password is used, an error message will appear.

146



Figure 7.45: Overview of the input field

Here is the error message: ”Incorrect password. Please try again.”

Figure 7.46: Overview of the error message

147



This shows that the student is no longer registered.

Figure 7.47: Showing that the student has been deleted

148



Figure 7.48: Change password page

User functionality

The ”Users” section overviews registered users, categorized by role (course coordinator, compa-

nies, and students). All roles can view contact information, while administrators have additional

privileges. Figure 25 through Figure 28 display the user pages of the web application.

149



Figure 7.49: The “All Users” page

Figure 7.50: The “Admins” page

150



Figure 7.51: The “Companies” page

Figure 7.52: The “Students” page

151



The search bar functionality

The search bar enables users to search for projects, project descriptions, or tags within the web

application. Search results are displayed on a separate result page. Figure 35 demonstrates the

result page after performing a search.

Figure 7.53: The result page after searching

152



Chapter 8

Conclusion and discussion

8.1 Learning Outcome

Working on this project has greatly benefited our team. It has given us a real sense of working in a

team and a taste of working on real-life projects in the workplace. Although we did not have direct

contact with a company throughout the project, our client acted as a supervisor, making us feel like

we were collaborating with a business.

Another advantage is that we always had to come up with solutions when we encountered challenges,

which taught us a lot about confidence and strengthened our skills and experiences. Each team

member contributed to the project well, and the whole team functioned as a unit, even though it

was sometimes challenging to keep communication at the same level.

Despite being unable to fulfill all the requirements 100%, especially the non-functional ones, we are

satisfied with the effort we put in. We are now excited to see our work being used in practice and

the positive impact the application can have.

153



8.2 What is the product’s utility value?

This application has shown more advantages and usefulness than we initially anticipated. Although

it was primarily developed to make administrative tasks more manageable for administrators, it has

the potential to benefit businesses and students greatly. The main benefit of the platform is that

course coordinators can scale up the number of projects, companies and students, without increasing

the resources needed to manage things.

Communication is improved with this application. This saves time and gives students a more

excellent overview of available opportunities. It can also help to find projects more aligned with the

student’s interests and skills. Overall, this application will be of great benefit to all parties involved.

8.3 What would we have done differently?

If we were to do this project again or work on a similar type of project, we would initially use the

experience we had learned through this project and make some changes. First of all, we would use

a different type of planning for implementation and documentation. Although we did well with this

project and planning, we would have saved much more time if we had executed this project with, for

example, the waterfall method, where the requirements are determined from the start. Changes in

requirements caused the actual implementation not always to follow the project plan we had created.

Some choices we made regarding implementing the application could also have been different. A

specific example is if we had dropped using Blade and instead used a different frontend framework

like Angular or React. We could have done several things differently, such as implementing the ap-

plication. Dropping Blade for the frontend and using a frontend framework like Angular/React/Vue

would have been better because:

• API application testing would have been much more accessible.

• The frontend would have been more dynamic. It would have been much easier to implement,

for example, the favorite function. (here, we need a reference to it)

154



• It would have enabled better separation of concern.

• We would have had more choices regarding the frontend because we could have used several

libraries for components in frameworks like React.

Regarding user-testing the application, we would have planned it much earlier than we had done.

This is because we did not know it would take time to get the application approved by SIKT and

TSD. Instead, we could have also spent more time testing the application with actual companies

and having more tests with employers to avoid as many change requests as possible.

8.4 Feedback from the Course Coordinator

The course coordinator had only one day per week available to work on the project due to limited

time in the project schedule. This could be challenging for our team, so we needed to adapt to the

course coordinator’s schedule. One of the solutions discussed was to schedule meetings of different

lengths depending on the necessity, allowing the team to work more efficiently and use time better.

Another solution suggested was to find external mentors who could assist us with the project,

providing extra support, expertise, and an outside perspective.

It was decided that questions requiring immediate answers should be communicated via Slack to

ensure good communication within the team. In contrast, questions that could wait a day should

be sent via email. This helped reduce disruptions and maintain focus on the work being done.

Most of the feedback from the course coordinator was upbeat throughout the project. The course

coordinator was quite satisfied with creating the requirement specification and how we collaborated

with him to realize his requirements in practice. During the project, course coordinator identified

some challenges related to project planning and the need for faster feedback and answers to questions.

Course coordinator’s feedback was positively received, and the group worked together to overcome

the challenges, which helped strengthen teamwork and ensure the project’s successful completion.

The course coordinator has issued a certificate for the work we carried out during the project period.

This certificate can be found in its entirety in Appendix A.14.

155



8.5 Status of further development and production setting of

the product

The course coordinator plans to have the product ready for production and testing by July, following

the final changes. Our next step is to attempt to deploy it on Microsoft Azure or AWS to achieve

this goal. Additionally, during the development process, we were contacted by a representative from

the Department of Behavioral Psychology at OsloMet, as they are working on a similar solution for

their master’s program, enabling students to find external collaborators for research projects. We

discussed the possibility of collaboration in the fall of 2023, based on the MVP we have developed

and are currently in the planning phase for. Furthermore, we aim to further enhance the product

after the summer and make it available to more schools and programs. Another significant aspect

of future development is the implementation of Feide authentication, which can be utilized more

efficiently in Norway since Feide access is available to everyone in the country.

We can also continue to work on developing the frontend and separate it from the backend so that

we can focus on frontend tasks separately from backend tasks.

Regarding quality assurance of the product, we need to work more on this in the other development

phase. The extra focus should be on testing, including Test Driven Development (TDD), system

testing, integration testing, and automated testing. We also need to structure the folder in a more

organized and clear way according to ”Clean structure.”

8.6 Summary and Conclusion

Our idea turned into reality in the form of a web application. This was achieved through hard work,

collaboration, and consistency. All group members contributed to the project, working in parallel and

together. We did this with agile development, working in sprints, and having retrospective meetings.

All the members agreed that the project was insightful, instructive, and exciting. We have gained

much new knowledge and experience through the software development process in practice.

156



We are very proud of our solution, even though we did not manage to host the application on

OsloMet’s server within the project’s time frame. However, the project course coordinator was

pleased with the final result and looks forward to potentially using the application the following

semester. The application will contribute to the “IT project in practice” course being available

for more students since the internship matchmaking process is faster and administration is more

accessible. Our group is looking forward to continuing this application’s development after the

bachelor project.

157



Bibliography

[Fre09] Maxim Freidgeim. What are the differences between unit tests, integration tests, smoke

tests, and regression tests? https://stackoverflow.com/questions/520064/what-

are-the-differences-between-unit-tests-integration-tests-smoke-tests-

and. [Online; accessed May 15, 2023]. Feb. 2009.

[WG12] W. Eric Wong and Ian Gorton. “Software Modularity: A Review and New Research

Directions”. In: ACM Computing Surveys (CSUR) 45.1 (2012). [Online; accessed May

9, 2023], pp. 1–36. doi: 10.1145/2379776.2379778.

[Moo16] Christopher Moody. “Work Wanted: Cybersecurity jobs a priority for government”. In:

The Florida Times-Union (July 2016). [Online; accessed April 29, 2023].

[Sjo16] L. A. Sjo. Overordnet Testplan - MUSIT Ny IT-arkitektur, Pilot og Hovedprosjekt.

https://wiki.uio.no/usit/musit/images/0/0a/Overordnet_testplan_MUSIT_Ny_

IT-arkitektur%2C_Pilot_og_Hovedprosjekt_v1.0.pdf. [Online; accessed May 15,

2023]. June 2016.

[Don21] Fred Donovan. “What Is STRIDE Threat Modeling: Anticipate Cyberattacks”. In:

Security Intelligence (Jan. 2021). [Online; accessed May 24, 2023]. url: https : / /

securityintelligence.com/articles/what-is-stride-threat-modeling-anticipate-

cyberattacks/.

[Heu21] Matthew Heusser. “What unit test coverage percentage should teams aim for?” In:

TechTarget (Dec. 2021). [Online; accessed May 16, 2023].

[Lar21a] Laravel Documentation. Laravel Authorization. https://laravel.com/docs/9.x/

authorization. [Online; accessed May 12, 2023]. 2021.

158

https://stackoverflow.com/questions/520064/what-are-the-differences-between-unit-tests-integration-tests-smoke-tests-and
https://stackoverflow.com/questions/520064/what-are-the-differences-between-unit-tests-integration-tests-smoke-tests-and
https://stackoverflow.com/questions/520064/what-are-the-differences-between-unit-tests-integration-tests-smoke-tests-and
https://doi.org/10.1145/2379776.2379778
https://wiki.uio.no/usit/musit/images/0/0a/Overordnet_testplan_MUSIT_Ny_IT-arkitektur%2C_Pilot_og_Hovedprosjekt_v1.0.pdf
https://wiki.uio.no/usit/musit/images/0/0a/Overordnet_testplan_MUSIT_Ny_IT-arkitektur%2C_Pilot_og_Hovedprosjekt_v1.0.pdf
https://securityintelligence.com/articles/what-is-stride-threat-modeling-anticipate-cyberattacks/
https://securityintelligence.com/articles/what-is-stride-threat-modeling-anticipate-cyberattacks/
https://securityintelligence.com/articles/what-is-stride-threat-modeling-anticipate-cyberattacks/
https://laravel.com/docs/9.x/authorization
https://laravel.com/docs/9.x/authorization


[Lar21b] Laravel Documentation. Laravel Middleware. https : / / laravel . com / docs / 9 . x /

middleware. [Online; accessed May 12, 2023]. 2021.

[Żur21] M. Żurawiecki. Why requirements test coverage is key to success. https://deviniti.

com/blog/application-lifecycle-management/why-requirements-test-coverage-

is-key-to-success/. [Online; accessed May 5, 2023]. June 2021.

[Aul+22] G. S. Aulakh et al. “Project course organisational tool”. In: (2022).

[Ind22] Indeed Editorial Team. “Differences Between Acceptance and Integration Testing”. In:

(Aug. 2022). [Online; accessed May 5, 2023].

[San22] Daniel E. Santo. Top 5 main Agile methodologies: advantages and disadvantages. https:

//www.xpand-it.com/blog/top-5-agile-methodologies/. [Online; accessed April

18, 2023]. Mar. 2022.

[Som+22] M. N. Sommervold et al. “Bachelorprojeckt”. In: JUVET 138 (May 2022). Online; ac-

cessed January 1, 2023.

[two22] twoday. Hva er egentlig en Design Sprint. https://www.twoday.no/blogg/teknologi/

hva-er-egentlig-en-design-sprint. [Online; accessed May 9, 2023]. Dec. 2022.

[App23] Apple. Introduksjon til Single Sign On med Apple-enheter. https://support.apple.

com/no-no/guide/deployment/depfdbf18f55/web. [Online; accessed May 12, 2023].

May 2023.

[Aul+23] G. S. Aulakh et al. Preliminary Project Report - Project Matchmaking and Coordinating

Platform. Unpublished report. Jan. 2023.

[Joh23] Eric Van Johnson. Automated Testing Using PHPUnit. [Online; accessed May 24, 2023].

Mar. 2023. url: https://www.phparch.com/2023/03/automated-testing-using-

phpunit/.

[Ari22] Kazi Ariyan. Laravel 9 - Build Complete Inventory Management System A-Z. https:

//www.udemy.com/course/laravel- build- complete- inventory- management-

system/. Online; accessed January 1, 2023. October 5, 2022.

[Atlnd] Atlassian. What is Agile? — Atlassian. https://www.atlassian.com/agile. [Online;

accessed April 18, 2023]. n.d.

[Bernd] Sebastian Bergmann. Welcome to PHPUnit! https://phpunit.de/. [Online; accessed

April 6, 2023]. n.d.

159

https://laravel.com/docs/9.x/middleware
https://laravel.com/docs/9.x/middleware
https://deviniti.com/blog/application-lifecycle-management/why-requirements-test-coverage-is-key-to-success/
https://deviniti.com/blog/application-lifecycle-management/why-requirements-test-coverage-is-key-to-success/
https://deviniti.com/blog/application-lifecycle-management/why-requirements-test-coverage-is-key-to-success/
https://www.xpand-it.com/blog/top-5-agile-methodologies/
https://www.xpand-it.com/blog/top-5-agile-methodologies/
https://www.twoday.no/blogg/teknologi/hva-er-egentlig-en-design-sprint
https://www.twoday.no/blogg/teknologi/hva-er-egentlig-en-design-sprint
https://support.apple.com/no-no/guide/deployment/depfdbf18f55/web
https://support.apple.com/no-no/guide/deployment/depfdbf18f55/web
https://www.phparch.com/2023/03/automated-testing-using-phpunit/
https://www.phparch.com/2023/03/automated-testing-using-phpunit/
https://www.udemy.com/course/laravel-build-complete-inventory-management-system/
https://www.udemy.com/course/laravel-build-complete-inventory-management-system/
https://www.udemy.com/course/laravel-build-complete-inventory-management-system/
https://www.atlassian.com/agile
https://phpunit.de/


[Blind] Blinkmarked. Universell utforming. https://blinkmarked.no/universell-utforming/.

[Online; accessed May 24, 2023]. n.d.

[Bcnd] Dave Marshall Brady Pádraic and contributors. Mockery Docs. http://docs.mockery.

io/en/latest/. [Online; accessed April 6, 2023]. n.d.

[Capnd] Capterra. IntelliJ IDEA vs PhpStorm – Capterra. https : / / www . capterra . com /

integrated-development-environment-(ide)-software/compare/136010-186624/

IntelliJ-IDEA-vs-PhpStorm. [Online; accessed March 24, 2023]. n.d.

[Comnda] European Commission. What information must be given to individuals whose data is col-

lected? https://commission.europa.eu/law/law-topic/data-protection/reform/

rules-business-and-organisations/principles-gdpr/what-information-must-

be-given-individuals-whose-data-collected_en. [Online; accessed May 5, 2023].

n.d.

[Comndb] Zoom Video Communications. Zoom: Video Conferencing, Web Conferencing, Webi-

nars, Screen Sharing. https://zoom.us/. Online; accessed March 24, 2023. n.d.

[Docnd] Docker. Docker: empowering app development for developers. https://www.docker.

com/. Online; accessed March 24, 2023. n.d.

[Fignd] Figma. Figma: The collaborative interface design tool. https : / / www . figma . com/.

Online; accessed March 24, 2023. n.d.

[Gitnd] GitHub. GitHub: Where the world builds software. https://github.com/. Online;

accessed March 24, 2023. n.d.

[nd] JavaScript. https://developer.mozilla.org/en-US/docs/Web/JavaScript. Online;

accessed March 24, 2023. n.d.

[Jetnd] Jetbrains. The Lightning-Smart PHP IDE – PhpStorm. https://www.jetbrains.com/

phpstorm/. [Online; accessed March 24, 2023]. n.d.

[Kumnd] V. Kumar. Smoke Testing vs Sanity Testing vs Regression Testing Explained. https:

//testsigma.com/blog/smoke- testing- vs- sanity- testing- vs- regression-

testing-explained/. [Online; accessed May 15, 2023]. n.d.

[Labnd] Notion Labs. Notion: Your wiki, docs projects. Together. https://www.notion.so/

product. Online; accessed March 24, 2023. n.d.

160

https://blinkmarked.no/universell-utforming/
http://docs.mockery.io/en/latest/
http://docs.mockery.io/en/latest/
https://www.capterra.com/integrated-development-environment-(ide)-software/compare/136010-186624/IntelliJ-IDEA-vs-PhpStorm
https://www.capterra.com/integrated-development-environment-(ide)-software/compare/136010-186624/IntelliJ-IDEA-vs-PhpStorm
https://www.capterra.com/integrated-development-environment-(ide)-software/compare/136010-186624/IntelliJ-IDEA-vs-PhpStorm
https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations/principles-gdpr/what-information-must-be-given-individuals-whose-data-collected_en
https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations/principles-gdpr/what-information-must-be-given-individuals-whose-data-collected_en
https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations/principles-gdpr/what-information-must-be-given-individuals-whose-data-collected_en
https://zoom.us/
https://www.docker.com/
https://www.docker.com/
https://www.figma.com/
https://github.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://testsigma.com/blog/smoke-testing-vs-sanity-testing-vs-regression-testing-explained/
https://testsigma.com/blog/smoke-testing-vs-sanity-testing-vs-regression-testing-explained/
https://testsigma.com/blog/smoke-testing-vs-sanity-testing-vs-regression-testing-explained/
https://www.notion.so/product
https://www.notion.so/product


[Larnda] Laravel. Blade templates. https://laravel.com/docs/10.x/blade. [Online; accessed

March 24, 2023]. n.d.

[Larndb] Laravel. Eloquent Factories. https://laravel.com/docs/9.x/eloquent-factories#

main-content. Online; accessed May 25, 2023. n.d.

[Larndc] Laravel. Eloquent: Relationships. https : / / laravel . com / docs / 9 . x / eloquent -

relationships # querying - morph - to - relationships. [Online; accessed April 22,

2023]. n.d.

[Larndd] Laravel. Laravel - Database: Laravel 9.x Documentation. [Online; accessed May 5, 2023].

n.d. url: https://laravel.com/docs/9.x/database.

[Larnde] Laravel. Laravel Database Testing. https://laravel.com/docs/9.x/database-

testing. [Online; accessed May 15, 2023]. n.d.

[Larndf] Laravel. Laravel Sail. https://laravel.com/docs/9.x/sail. Online; accessed April

16, 2023. n.d.

[Larndg] Laravel Documentation. Laravel Controllers Documentation. https://laravel.com/

docs/9.x/controllers. [Online; accessed April 22, 2023]. n.d.

[Larndh] Laravel Documentation. Laravel Eloquent Resources. https://laravel.com/docs/9.

x/eloquent-resources. [Online; accessed April 22, 2023]. n.d.

[Larndi] Laravel Documentation. Laravel Routing. https://laravel.com/docs/9.x/routing.

[Online; accessed April 22, 2023]. n.d.

[Larndj] Larry Conklin, Victoria Drake, Sven strittmatter. Threat Modeling Process. https :

//owasp.org/www-community/Threat_Modeling_Process. [Online; accessed May 23,

2023]. n.d.

[Livnd] Livewire. Laravel Livewire. https://laravel-livewire.com/. [Online; accessed May

16, 2023]. n.d.

[Matnd] Material Design.Accessibility – Material Design 3. https://m3.material.io/foundations/

accessible-design/overview. [Online; accessed May 12, 2023]. n.d.

[Metnd] Meta. Messenger: More ways to stay in touch. https://www.messenger.com/features.

Online; accessed March 24, 2023. n.d.

161

https://laravel.com/docs/10.x/blade
https://laravel.com/docs/9.x/eloquent-factories##main-content
https://laravel.com/docs/9.x/eloquent-factories##main-content
https://laravel.com/docs/9.x/eloquent-relationships##querying-morph-to-relationships
https://laravel.com/docs/9.x/eloquent-relationships##querying-morph-to-relationships
https://laravel.com/docs/9.x/database
https://laravel.com/docs/9.x/database-testing
https://laravel.com/docs/9.x/database-testing
https://laravel.com/docs/9.x/sail
https://laravel.com/docs/9.x/controllers
https://laravel.com/docs/9.x/controllers
https://laravel.com/docs/9.x/eloquent-resources
https://laravel.com/docs/9.x/eloquent-resources
https://laravel.com/docs/9.x/routing
https://owasp.org/www-community/Threat_Modeling_Process
https://owasp.org/www-community/Threat_Modeling_Process
https://laravel-livewire.com/
https://m3.material.io/foundations/accessible-design/overview
https://m3.material.io/foundations/accessible-design/overview
https://www.messenger.com/features


[Micnda] Microsoft. Microsoft: OneDrive Personal Cloud Storage. https://www.microsoft.

com/en/microsoft-365/onedrive/online-cloud-storage. Online; accessed March

24, 2023. n.d.

[Micndb] Microsoft. Office is now Microsoft 365 - Microsoft 365. https://www.microsoft.com/

en-us/microsoft-365?rtc=1. [Online; accessed March 24, 2023]. n.d.

[Orand] Oracle. MySQL Workbench. https://www.mysql.com/products/workbench/. Online;

accessed March 24, 2023. n.d.

[Otwnd] Taylor Otwell. Laravel - The PHP Framework For Web Artisans. https://laravel.

com/. Online; accessed March 24, 2023. n.d.

[OWAnd] OWASP Foundation. OWASP Top Ten. https://owasp.org/www- project- top-

ten/#. [Online; accessed May 5, 2023]. n.d.

[Par22] Linda Park. owasp top 10 vulnerabilities. https://www.zscaler.com/blogs/product-

insights / what - owasp - top - 10 ? _bt = 652979179132 & _bk = & _ bm = & _ bn = g & _bg =

146314240486&utm_source=google&utm_medium=cpc&utm_campaign=google-ads-

na&gclid=CjwKCAjw__ihBhADEiwAXEazJjUuY6pZcP367yGClpXB7TP5_Ha4svX27oEXgoTKFF2NivtkA8G.

[Online; accessed May 5, 2023]. March 11, 2022.

[Patnd] A. Patil. 10 Reasons Why Laravel Is the Best PHP Framework For 2023. Clarion Tech-

nologies. Online; accessed May 8, 2023. n.d. url: https://www.clariontech.com/

blog/10-reasons-why-laravel-is-the-best-php-framework-for-2019.

[Posnd] Postman. Postman: What is Postman? https://www.postman.com/. [Online; accessed

March 24, 2023]. n.d.

[Prond] ProductPlan. Product Specs. https://www.productplan.com/glossary/product-

specs/. Online; accessed April 16, 2023. n.d.

[smand] smartsheet. All Risk Assessment Matrix Templates You Need. https://www.smartsheet.

com/all-risk-assessment-matrix-templates-you-need. [Online; accessed May 23,

2023]. n.d.

[Sofnd] SmartBear Software. What is Swagger? (OpenAPI specification). https://swagger.

io/docs/specification/2-0/what-is-swagger/. [Online; accessed April 6, 2023].

n.d.

162

https://www.microsoft.com/en/microsoft-365/onedrive/online-cloud-storage
https://www.microsoft.com/en/microsoft-365/onedrive/online-cloud-storage
https://www.microsoft.com/en-us/microsoft-365?rtc=1
https://www.microsoft.com/en-us/microsoft-365?rtc=1
https://www.mysql.com/products/workbench/
https://laravel.com/
https://laravel.com/
https://owasp.org/www-project-top-ten/##
https://owasp.org/www-project-top-ten/##
https://www.zscaler.com/blogs/product-insights/what-owasp-top-10?_bt=652979179132&_bk=&_bm=&_bn=g&_bg=146314240486&utm_source=google&utm_medium=cpc&utm_campaign=google-ads-na&gclid=CjwKCAjw__ihBhADEiwAXEazJjUuY6pZcP367yGClpXB7TP5_Ha4svX27oEXgoTKFF2NivtkA8G
https://www.zscaler.com/blogs/product-insights/what-owasp-top-10?_bt=652979179132&_bk=&_bm=&_bn=g&_bg=146314240486&utm_source=google&utm_medium=cpc&utm_campaign=google-ads-na&gclid=CjwKCAjw__ihBhADEiwAXEazJjUuY6pZcP367yGClpXB7TP5_Ha4svX27oEXgoTKFF2NivtkA8G
https://www.zscaler.com/blogs/product-insights/what-owasp-top-10?_bt=652979179132&_bk=&_bm=&_bn=g&_bg=146314240486&utm_source=google&utm_medium=cpc&utm_campaign=google-ads-na&gclid=CjwKCAjw__ihBhADEiwAXEazJjUuY6pZcP367yGClpXB7TP5_Ha4svX27oEXgoTKFF2NivtkA8G
https://www.zscaler.com/blogs/product-insights/what-owasp-top-10?_bt=652979179132&_bk=&_bm=&_bn=g&_bg=146314240486&utm_source=google&utm_medium=cpc&utm_campaign=google-ads-na&gclid=CjwKCAjw__ihBhADEiwAXEazJjUuY6pZcP367yGClpXB7TP5_Ha4svX27oEXgoTKFF2NivtkA8G
https://www.clariontech.com/blog/10-reasons-why-laravel-is-the-best-php-framework-for-2019
https://www.clariontech.com/blog/10-reasons-why-laravel-is-the-best-php-framework-for-2019
https://www.postman.com/
https://www.productplan.com/glossary/product-specs/
https://www.productplan.com/glossary/product-specs/
https://www.smartsheet.com/all-risk-assessment-matrix-templates-you-need
https://www.smartsheet.com/all-risk-assessment-matrix-templates-you-need
https://swagger.io/docs/specification/2-0/what-is-swagger/
https://swagger.io/docs/specification/2-0/what-is-swagger/


[SSB13] Sonia, A Singhal, and H. Banati. Fuzzy Logic Approach for Threat Prioritization in

Agile Security Framework using DREAD Model. https: // www. semanticscholar .

org / paper / Fuzzy - Logic - Approach - for - Threat - Prioritization - in - Sonia -

Singhal/2dc16b8d859402a20180cc7018f7e2f9f090cebd/figure/2. [Online; accessed

April 20, 2023]. December 24, 2013.

[Tecnd] TechTarget. Blowfish. https://www.techtarget.com/searchsecurity/definition/

Blowfish. [Online; accessed May 5, 2023]. n.d.

[W3Snd] W3Schools. What is Bootstrap? https : / / www . w3schools . com / whatis / whatis _

bootstrap.asp. [Online; accessed March 24, 2023]. n.d.

[Xdend] Xdebug. Xdebug - Step Debug. https://xdebug.org/docs/step_debug. [Online;

accessed May 16, 2023]. n.d.

163

https://www.semanticscholar.org/paper/Fuzzy-Logic-Approach-for-Threat-Prioritization-in-Sonia-Singhal/2dc16b8d859402a20180cc7018f7e2f9f090cebd/figure/2
https://www.semanticscholar.org/paper/Fuzzy-Logic-Approach-for-Threat-Prioritization-in-Sonia-Singhal/2dc16b8d859402a20180cc7018f7e2f9f090cebd/figure/2
https://www.semanticscholar.org/paper/Fuzzy-Logic-Approach-for-Threat-Prioritization-in-Sonia-Singhal/2dc16b8d859402a20180cc7018f7e2f9f090cebd/figure/2
https://www.techtarget.com/searchsecurity/definition/Blowfish
https://www.techtarget.com/searchsecurity/definition/Blowfish
https://www.w3schools.com/whatis/whatis_bootstrap.asp
https://www.w3schools.com/whatis/whatis_bootstrap.asp
https://xdebug.org/docs/step_debug


Appendix A

Appendix

164



A.1 Previous Minimum Viable Product (MVP) Version 1.0

165



166



167



168



169



170



171



172



A.2 Final version of the prototype

Prototype - Authentication

173



Prototype - Admin

174



175



176



177



Prototype - Company

178



179



180



Prototype - Student

181



182



183



A.3 User Test - Template from IT project in practice

184



A.4 User Test - Template

185



186



A.5 Interview guide

187



A.6 User Guidelines

188



189



A.7 Notification form for the processing of personal data

190



191



192



A.8 First version of the database

193



A.9 Second version of the database

194



A.10 Hosting throw OsloMet VM

195



196



197



A.11 Hosting throw Microsoft Azure

198



199



A.12 Modified docker-compose.yml file

200



201



A.13 Poster

202



A.14 Certificate from the course coordinator

203


	Preface
	List of Figures
	List of Tables
	Introduction
	Project Background
	Challenges of Course Management Process
	Project Objectives
	Previous Work and Methodology
	The project group
	Supervisor
	Project Provider

	Initial Product Specifications
	Stakeholders Impacted by Student Internship Matchmaking (sim)
	Functional Requirements
	Non-functional Requirements

	Process documentation
	Planning
	At start-up
	Requirements Review Workshop and Priority List Creation
	Addressing Availability Challenges and Digital Meetings
	Introduction to Git Flow and Implementation Approach
	Progress Gantt Chart for Task Overview and Timeline
	Exploring PHP Laravel as the Framework Choice

	Under development
	Sprint Planning and Focus Areas
	Deprioritizing some Requirements
	Balancing Functional Requirements and Design Focus

	Areas of Responsibility

	Tools used in the process
	Framework/library used
	Working method
	Agile development
	Scrumban
	Scrumban in practice


	The development process
	Start-up phase
	Design and Prototype Sprint
	Implementation planning and set up of the software environment

	Development phase
	Development of mvp
	Docker Container Hosting
	Hosting
	MySQL Database
	Single Sign On
	Development of the front end with the blade

	Documentation
	Correspondence between the project plan and actual implementation
	Quality assurance

	Reflection and Discussion
	Challenges around basic setup of coding environment
	Challenges regarding changes in software requirement
	Challenges in development of mvp
	Challenges and reflections about the frontend
	Challenges in deprioritizing some Requirements


	Product Documentation
	Description of solution
	Architecture
	Frontend
	Architecture

	Backend
	Models
	Controllers
	Middleware
	Policies
	api Resource
	Routes

	Sign-on
	Design and accessibility

	Correspondence between requirement specification and product
	Central data structures in the solution
	Principles for code development
	Modularity
	Object-Oriented Programming (OOP)
	Separation of Concerns
	Don't Repeat Yourself (DRY)


	Database
	Factories
	Migrations
	Seeders

	Security
	Secure Development and safety measures
	Risk Assessment and Threat Modeling
	OWASP
	Security solutions for the application
	Terms & Conditions
	Secure development in practice
	Reflections on login and authentication method

	Relationship to machines/databases/OS
	api documentation
	Database Integration
	Main parts of the program


	Testing
	Introduction
	User Testing
	Testing under development phase
	User Tests done by course coordinator
	Feedback/result
	Response to the Feedback
	Student-led User Testing

	Limitations and Challenges in User Testing

	Technical Testing
	PhpUnit and Laravel's built-in testing library
	Unit Test
	Basics of Defect Tracking


	Feature test
	Smoke test
	Challenges in technical testing
	Correspondence between accurate test coverage and ideal test coverage

	User Guide
	Registration and Login
	Common Login Page For All Actors
	Common Password Reset
	Create an Account

	The Core Flow Of The Application
	Common Functionalities for all actors

	Conclusion and discussion
	Learning Outcome
	What is the product's utility value?
	What would we have done differently?
	Feedback from the Course Coordinator
	Status of further development and production setting of the product
	Summary and Conclusion

	Appendix
	Previous Minimum Viable Product (MVP) Version 1.0
	Final version of the prototype
	User Test - Template from IT project in practice
	User Test - Template
	Interview guide
	User Guidelines
	Notification form for the processing of personal data
	First version of the database
	Second version of the database
	Hosting throw OsloMet VM
	Hosting throw Microsoft Azure
	Modified docker-compose.yml file
	Poster
	Certificate from the course coordinator


